Cognitive/Behavioral Neurology Unit, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA.
Neuroimage. 2012 Jan 16;59(2):1560-70. doi: 10.1016/j.neuroimage.2011.08.065. Epub 2011 Aug 31.
Anatomical, clinical and imaging findings suggest that the cerebellum is engaged in cognitive and affective functions as well as motor control. Evidence from converging modalities also indicates that there is a functional topography in the human cerebellum for overt control of movement vs. higher functions, such that the cerebellum can be divided into zones depending on connectivity with sensorimotor vs. multimodal association cortices. Using functional MRI, we show that regions active during overt movement differ from those involved in higher-level language, spatial processing and working memory tasks. Nine healthy participants each completed five tasks in order to determine the relative activation patterns for the different paradigms. Right-handed finger-tapping activated right cerebellar lobules IV-V and VIII, consistent with descriptions of the cerebellar homunculi. Verb generation engaged right cerebellar lobules VI-Crus I and a second cluster in lobules VIIB-VIIIA. Mental rotation activation peaks were localized to medial left cerebellar lobule VII (Crus II). A 2-back working memory task activated bilateral regions of lobules VI-VII. Viewing arousing vs. neutral images did not reliably activate the cerebellum or cerebral limbic areas in this study. The cerebellar functional topography identified in this study reflects the involvement of different cerebro-cerebellar circuits depending on the demands of the task being performed: overt movement activated sensorimotor cortices along with contralateral cerebellar lobules IV-V and VIII, whereas more cognitively demanding tasks engaged prefrontal and parietal cortices along with cerebellar lobules VI and VII. These findings provide further support for a cerebellar role in both motor and cognitive tasks, and better establish the existence of functional subregions in the cerebellum. Future studies are needed to determine the exact contribution of the cerebellum - and different cerebro-cerebellar circuits - to task performance.
解剖学、临床和影像学研究结果表明,小脑参与认知和情感功能以及运动控制。来自多种模态的证据也表明,人类小脑在运动的明显控制与更高功能之间存在功能拓扑结构,使得小脑可以根据与感觉运动与多模态联合皮质的连接划分为不同区域。使用功能磁共振成像,我们发现明显运动过程中活跃的区域与参与高级语言、空间处理和工作记忆任务的区域不同。九名健康参与者每人完成五项任务,以确定不同范式的相对激活模式。右手手指敲击激活右侧小脑叶 IV-V 和 VIII,与小脑小人的描述一致。动词生成涉及右侧小脑叶 VI-Crus I 和另一个位于 VIIB-VIIIA 叶的簇。心理旋转激活的峰值定位于左侧小脑叶 VII(Crus II)的中心。2 回工作记忆任务激活双侧 VI-VII 叶区。在这项研究中,观看令人兴奋的与中性图像并没有可靠地激活小脑或大脑边缘区域。本研究中确定的小脑功能拓扑结构反映了不同脑-小脑回路的参与,这取决于正在执行的任务的要求:明显的运动激活了感觉运动皮质以及对侧小脑叶 IV-V 和 VIII,而更具认知挑战性的任务则激活了前额叶和顶叶皮质以及小脑叶 VI 和 VII。这些发现为小脑在运动和认知任务中的作用提供了进一步的支持,并更好地确定了小脑存在功能子区。未来的研究需要确定小脑 - 以及不同的脑-小脑回路 - 对任务表现的确切贡献。