Suppr超能文献

参与激素诱导的钙离子通量的信号转导机制。

Signal transduction mechanisms involved in hormonal Ca2+ fluxes.

作者信息

Williamson J R, Monck J R

机构信息

Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia 19104.

出版信息

Environ Health Perspect. 1990 Mar;84:121-36. doi: 10.1289/ehp.9084121.

Abstract

This article reviews literature up to mid-1988 covering recent developments pertaining to agonist-induced Ca2+ signaling in various cell types. A large amount of experimental evidence supports a mechanism involving specific guanine nucleotide-binding proteins (G-proteins) as transducing factors between occupancy of a wide variety of receptors by many different agonists and activation of polyphosphoinositide specific phospholipase C enzymes. Although many different G-proteins and phospholipase C enzymes have been purified and cloned, successful reconstitution of the components has not been achieved. Hence, many questions concerning the specificity of coupling between particular receptors to a particular G-protein and phospholipase C subtype remain unresolved. Phospholipase C subtypes isolated from the membrane and soluble fractions of the cell are directly activated by Ca2+ and, preferentially, hydrolyse phosphatidylinositol 4,5-bisphosphate (PIP2) and phosphatidylinositol 4-phosphate (PIP). The role of the G-protein is to stimulate inositol lipid breakdown at free Ca2+ concentrations (0.1-0.2 microM) typical of unstimulated cells. Overwhelming evidence supports the concept that Ins 1,4,5-P3, the product of PIP2 hydrolysis, is responsible for the initial agonist-induced Ca2+ transient by mobilization of Ca2+ from a specialized intracellular store. An Ins 1,4,5-P3 receptor has been purified that may correspond to the postulated Ins 1,4,5-P3 gated Ca2+ channel. Despite a growing understanding of the complexities of the metabolism of Ins 1,4,5-P3 and a successful purification of many enzymes involved, including the ATP-dependent 3-kinase that converts Ins 1,4,5-P3 to Ins 1,3,4,5-P4, the role of Ins 1,3,4,5-P4 as a putative second messenger remains enigmatic. Multiple forms of protein kinase C have been described and the role is well established for a 1,2-diacylglycerol, the second product of PIP2 hydrolysis, as its physiological activator. Although protein kinase C has been shown to phosphorylate and modulate the activity of several proteins involved in the Ca2+ signaling pathway and Ca2+ transport, the physiological significance of the protein kinase C in agonist-stimulated cell function requires further elucidation. The extension of measurements of hormone-induced Ca2+ changes to single cells has shown that the occurrence of Ca2+ oscillations is a common phenomena. Elucidation of the biochemical mechanisms causing this oscillatory response and its physiological significance represents an important challenge for future studies.

摘要

本文回顾了截至1988年年中有关不同细胞类型中激动剂诱导的Ca2+信号传导最新进展的文献。大量实验证据支持一种机制,该机制涉及特定的鸟嘌呤核苷酸结合蛋白(G蛋白)作为多种不同激动剂占据多种受体与多磷酸肌醇特异性磷脂酶C酶激活之间的转导因子。尽管许多不同的G蛋白和磷脂酶C酶已被纯化和克隆,但尚未实现这些成分的成功重组。因此,许多关于特定受体与特定G蛋白和磷脂酶C亚型之间偶联特异性的问题仍未解决。从细胞膜和可溶性部分分离出的磷脂酶C亚型可被Ca2+直接激活,并优先水解磷脂酰肌醇4,5-二磷酸(PIP2)和磷脂酰肌醇4-磷酸(PIP)。G蛋白的作用是在未受刺激细胞典型的游离Ca2+浓度(0.1-0.2微摩尔)下刺激肌醇脂质分解。压倒性的证据支持这样的概念,即PIP2水解产物肌醇1,4,5-三磷酸(Ins 1,4,5-P3)通过从特殊的细胞内储存库中动员Ca2+来引发激动剂诱导的初始Ca2+瞬变。一种肌醇1,4,5-三磷酸受体已被纯化,它可能对应于假定的肌醇1,4,5-三磷酸门控Ca2+通道。尽管对肌醇1,4,5-三磷酸代谢的复杂性的理解不断增加,并且许多相关酶包括将肌醇1,4,5-三磷酸转化为肌醇1,3,4,五磷酸(Ins 1,3,4,5-P4)的ATP依赖性3-激酶已成功纯化,但肌醇1,3,4,5-四磷酸作为假定的第二信使的作用仍然神秘。已经描述了多种形式的蛋白激酶C,并且作为其生理激活剂的1,2-二酰基甘油(PIP2水解的第二种产物)的作用已得到充分确立。尽管已证明蛋白激酶C可磷酸化并调节Ca2+信号传导途径和Ca2+转运中涉及的几种蛋白质的活性,但蛋白激酶C在激动剂刺激的细胞功能中的生理意义仍需进一步阐明。将激素诱导的Ca2+变化的测量扩展到单细胞已表明Ca2+振荡的发生是一种常见现象。阐明导致这种振荡反应的生化机制及其生理意义是未来研究的一项重要挑战。

相似文献

2
Hormone effects on cellular Ca2+ fluxes.激素对细胞钙通量的影响。
Annu Rev Physiol. 1989;51:107-24. doi: 10.1146/annurev.ph.51.030189.000543.

本文引用的文献

1
What is a biological oscillator?什么是生物振荡器?
Am J Physiol. 1984 Jun;246(6 Pt 2):R847-53. doi: 10.1152/ajpregu.1984.246.6.R847.
6
Calcium messenger system: an integrated view.钙信使系统:综合观点。
Physiol Rev. 1984 Jul;64(3):938-84. doi: 10.1152/physrev.1984.64.3.938.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验