Suppr超能文献

海洋生物表面在过饱和气体和过冷水溶液中引发冰相。

Initiation of the ice phase by marine biogenic surfaces in supersaturated gas and supercooled aqueous phases.

机构信息

Institute for Terrestrial and Planetary Atmospheres/School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York 11794-5000, USA.

出版信息

Phys Chem Chem Phys. 2011 Nov 28;13(44):19882-94. doi: 10.1039/c1cp21844a. Epub 2011 Sep 12.

Abstract

Biogenic particles have the potential to affect the formation of ice crystals in the atmosphere with subsequent consequences for the hydrological cycle and climate. We present laboratory observations of heterogeneous ice nucleation in immersion and deposition modes under atmospherically relevant conditions initiated by Nannochloris atomus and Emiliania huxleyi, marine phytoplankton with structurally and chemically distinct cell walls. Temperatures at which freezing, melting, and water uptake occur are observed using optical microscopy. The intact and fragmented unarmoured cells of N. atomus in aqueous NaCl droplets enhance ice nucleation by 10-20 K over the homogeneous freezing limit and can be described by a modified water activity based ice nucleation approach. E. huxleyi cells covered by calcite plates do not enhance droplet freezing temperatures. Both species nucleate ice in the deposition mode at an ice saturation ratio, S(ice), as low as ~1.2 and below 240 K, however, for each, different nucleation modes occur at warmer temperatures. These observations show that markedly different biogenic surfaces have both comparable and contrasting effects on ice nucleation behaviour depending on the presence of the aqueous phase and the extent of supercooling and water vapour supersaturation. We derive heterogeneous ice nucleation rate coefficients, J(het), and cumulative ice nuclei spectra, K, for quantification and analysis using time-dependent and time-independent approaches, respectively. Contact angles, α, derived from J(het)via immersion freezing depend on T, a(w), and S(ice). For deposition freezing, α can be described as a function of S(ice) only. The different approaches yield different predictions of atmospheric ice crystal numbers primarily due to the time evolution allowed for the time-dependent approach with implications for the evolution of mixed-phase and ice clouds.

摘要

生物成因颗粒有可能影响大气中冰晶的形成,进而对水文循环和气候产生影响。我们展示了在大气相关条件下,由结构和化学性质不同的细胞壁的海洋浮游植物——束毛藻和海链藻,以浸没和沉积两种模式引发的非均相冰核化的实验室观测结果。利用光学显微镜观察了发生冻结、融化和吸水的温度。在同质冻结极限的基础上,用 NaCl 液滴包裹完整和破碎的无装甲束毛藻细胞增强了 10-20 K 的冰核化,并且可以用改进的基于水活度的冰核化方法来描述。被方解石板覆盖的海链藻细胞不会提高液滴的冻结温度。两种生物都能以低至~1.2 的冰饱和度比 S(ice)和低于 240 K 的温度在沉积模式下成核,然而,对于每种生物,在较温暖的温度下会发生不同的成核模式。这些观察结果表明,明显不同的生物成因表面对冰核化行为既有类似的影响,也有相反的影响,这取决于水相的存在以及过冷和水汽过饱和度的程度。我们利用时变和时不变方法分别推导出了非均相冰核化率系数 J(het)和累积冰核谱 K,用于定量和分析。通过浸没冻结从 J(het)导出的接触角α取决于 T、a(w)和 S(ice)。对于沉积冻结,α可以仅用 S(ice)来描述。不同的方法产生了不同的大气冰晶数预测值,主要是由于时变方法允许时间演化,这对混合相云和冰云的演化有影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验