Suppr超能文献

Effects of stimulating in raphe nuclei and in reticular formation on response of spinothalamic neurons to mechanical stimuli.

作者信息

McCreery D B, Bloedel J R, Hames E G

出版信息

J Neurophysiol. 1979 Jan;42(1 Pt 1):166-82. doi: 10.1152/jn.1979.42.1.166.

Abstract
  1. The purpose of these experiments was to compare effects of electrical stimuli applied in two regions of the brain stem that are the sites of origin of descending bulbospinal systems; namely, the nucleus gigantocellularis of Brodal (7) and the nucleus raphe magnus, on the responses of lumbosacral spinothalamic neurons to mechanical stimuli. 2. In cats anesthetized with alpha-chloralose, stimulating in either of these structures with single pulses of current while the spinothalamic neuron was tonically activated by a sustained mechanical pressure resulted in an increase in the excitability of the cell followed by a prolonged suppression of its impulse activity. 3. For different neurons, the latency of the excitation ranged from 4 to 18 ms following the brain stem stimulus, while the latency of the suppression ranged from 16 to 34 ms. 4. In general, the effects of stimulating in the reticular formation and in the raphe nuclei were similar. although quantitative differences were found in the effects of each on different spinothalamic neurons. On the basis of these two studies, it is argued that the reticulospinal and raphe-spinal systems exert qualitatively similar effects on the responses of spinothalamic neurons evaluated in this experiment. 5. A comparison of the magnitudes of the suppression phase evoked from several different sites in the ipsilateral reticular formation and nucleus raphe magnus suggests that the descending systems arising from both these structures may be quite heterogeneous. 6. Stimulation of both regions of the brain stem produced a much greater suppression of the response of the spinothalamic neurons to slowly changing or sustained mechanical stimuli than to transient stimuli. It is suggested that the effects of descending systems arising both in the raphe nuclei and in the reticular formation on the responses of spinothalamic neurons to a mechanical stimulus are at least as dependent on the time course of the mechanical stimulus as they are on its intensity.
摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验