Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA.
J Biol Chem. 2011 Nov 11;286(45):39560-72. doi: 10.1074/jbc.M111.269100. Epub 2011 Sep 15.
We performed genome-wide mutagenesis in C57BL/6J mice using N-ethyl-N-nitrosourea to identify mutations causing high blood glucose early in life and to produce new animal models of diabetes. Of a total of 13 new lines confirmed by heritability testing, we identified two semi-dominant pedigrees with novel missense mutations (Gck(K140E) and Gck(P417R)) in the gene encoding glucokinase (Gck), the mammalian glucose sensor that is mutated in human maturity onset diabetes of the young type 2 and the target of emerging anti-hyperglycemic agents that function as glucokinase activators (GKAs). Diabetes phenotype corresponded with genotype (mild-to-severe: Gck(+/+) < Gck(P417R/+), Gck(K140E)(/+) < Gck(P417R/P417R), Gck(P417R/K140E), and Gck(K140E/K140E)) and with the level of expression of GCK in liver. Each mutant was produced as the recombinant enzyme in Escherichia coli, and analysis of k(cat) and tryptophan fluorescence (I(320/360)) during thermal shift unfolding revealed a correlation between thermostability and the severity of hyperglycemia in the whole animal. Disruption of the glucokinase regulatory protein-binding site (GCK(K140E)), but not the ATP binding cassette (GCK(P417R)), prevented inhibition of enzyme activity by glucokinase regulatory protein and corresponded with reduced responsiveness to the GKA drug. Surprisingly, extracts from liver of diabetic GCK mutants inhibited activity of the recombinant enzyme, a property that was also observed in liver extracts from mice with streptozotocin-induced diabetes. These results indicate a relationship between genotype, phenotype, and GKA efficacy. The integration of forward genetic screening and biochemical profiling opens a pathway for preclinical development of mechanism-based diabetes therapies.
我们使用 N-乙基-N-亚硝基脲(N-ethyl-N-nitrosourea)在 C57BL/6J 小鼠中进行全基因组诱变,以鉴定导致生命早期高血糖的突变,并产生新的糖尿病动物模型。在经过遗传力测试确认的总共 13 条新系中,我们发现了两个具有新型错义突变(Gck(K140E)和 Gck(P417R))的半显性谱系,这些突变发生在编码葡萄糖激酶(Gck)的基因中,Gck 是哺乳动物的葡萄糖传感器,在人类青年发病的 2 型糖尿病中发生突变,也是新兴的抗高血糖药物(作为葡萄糖激酶激活剂(GKAs))的作用靶点。糖尿病表型与基因型(从轻度到重度:Gck(+/+)<Gck(P417R/+),Gck(K140E)(/+)<Gck(P417R/P417R),Gck(P417R/K140E)和 Gck(K140E/K140E))以及肝脏中 GCK 的表达水平相关。每个突变体都在大肠杆菌中作为重组酶产生,并在热移位展开过程中分析 k(cat)和色氨酸荧光(I(320/360)),发现热稳定性与整个动物高血糖的严重程度之间存在相关性。葡萄糖激酶调节蛋白结合位点(GCK(K140E))的破坏,但不是 ATP 结合盒(GCK(P417R)),阻止了葡萄糖激酶调节蛋白对酶活性的抑制作用,并且与对 GKA 药物的反应性降低相对应。令人惊讶的是,来自糖尿病 GCK 突变体肝脏的提取物抑制了重组酶的活性,这一特性也在链脲佐菌素诱导的糖尿病小鼠的肝脏提取物中观察到。这些结果表明基因型、表型和 GKA 疗效之间存在关系。正向遗传筛选和生化特征分析的整合为基于机制的糖尿病治疗的临床前开发开辟了一条途径。