College of Oceanic and Atmospheric Sciences, 104 COAS Administration Building, Oregon State University, Corvallis, OR 97331-5503, USA.
Science. 2011 Oct 21;334(6054):328-32. doi: 10.1126/science.1208897. Epub 2011 Sep 15.
Oceanic Rossby waves have been widely invoked as a mechanism for large-scale variability of chlorophyll (CHL) observed from satellites. High-resolution satellite altimeter measurements have recently revealed that sea-surface height (SSH) features previously interpreted as linear Rossby waves are nonlinear mesoscale coherent structures (referred to here as eddies). We analyze 10 years of measurements of these SSH fields and concurrent satellite measurements of upper-ocean CHL to show that these eddies exert a strong influence on the CHL field, thus requiring reassessment of the mechanism for the observed covariability of SSH and CHL. On time scales longer than 2 to 3 weeks, the dominant mechanism is shown to be eddy-induced horizontal advection of CHL by the rotational velocities of the eddies.
海洋罗斯贝波已被广泛认为是卫星观测到的叶绿素(CHL)大范围变化的一种机制。最近的高分辨率卫星测高仪测量结果显示,以前解释为线性罗斯贝波的海面高度(SSH)特征是非线性中尺度相干结构(此处称为漩涡)。我们分析了这些 SSH 场的 10 年测量结果以及同期的上层海洋 CHL 卫星测量结果,表明这些漩涡对 CHL 场有很强的影响,因此需要重新评估观察到的 SSH 和 CHL 协变性的机制。在时间尺度超过 2 至 3 周的情况下,主导机制被证明是漩涡的旋转速度引起的 CHL 的漩涡诱导水平平流。