Altitude Research Center, Department of Emergency Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
J Appl Physiol (1985). 2011 Dec;111(6):1727-34. doi: 10.1152/japplphysiol.00569.2011. Epub 2011 Sep 15.
Previous studies have suggested that a reduction in cerebral oxygen delivery may limit motor drive, particularly in hypoxic conditions, where oxygen transport is impaired. We hypothesized that raising end-tidal Pco(2) (Pet(CO(2))) during incremental exercise would increase cerebral blood flow (CBF) and oxygen delivery, thereby improving peak power output (W(peak)). Amateur cyclists performed two ramped exercise tests (25 W/min) in a counterbalanced order to compare the normal, poikilocapnic response against a clamped condition, in which Pet(CO(2)) was held at 50 Torr throughout exercise. Tests were performed in normoxia (barometric pressure = 630 mmHg, 1,650 m) and hypoxia (barometric pressure = 425 mmHg, 4,875 m) in a hypobaric chamber. An additional trial in hypoxia investigated effects of clamping at a lower Pet(CO(2)) (40 Torr) from ∼75 to 100% W(peak) to reduce potential influences of respiratory acidosis and muscle fatigue imposed by clamping Pet(CO(2)) at 50 Torr. Metabolic gases, ventilation, middle cerebral artery CBF velocity (transcranial Doppler), forehead pulse oximetry, and cerebral (prefrontal) and muscle (vastus lateralis) hemoglobin oxygenation (near infrared spectroscopy) were monitored across trials. Clamping Pet(CO(2)) at 50 Torr in both normoxia (n = 9) and hypoxia (n = 11) elevated CBF velocity (∼40%) and improved cerebral hemoglobin oxygenation (∼15%), but decreased W(peak) (6%) and peak oxygen consumption (11%). Clamping at 40 Torr near maximal effort in hypoxia (n = 6) also improved cerebral oxygenation (∼15%), but again limited W(peak) (5%). These findings demonstrate that increasing mass cerebral oxygen delivery via CO(2)-mediated vasodilation does not improve incremental exercise performance, at least when accompanied by respiratory acidosis.
先前的研究表明,脑氧输送的减少可能会限制运动驱动力,特别是在缺氧的情况下,因为氧的输送会受到损害。我们假设在递增运动过程中提高呼气末二氧化碳分压(PetCO2)会增加脑血流量(CBF)和氧输送,从而提高峰值功率输出(Wpeak)。业余自行车运动员在反平衡的顺序下进行了两次递增运动测试(25 W/min),以比较正常、高碳酸血症的反应与夹闭条件下的反应,在夹闭条件下,整个运动过程中 PetCO2 保持在 50 毫托。测试在常压(气压 = 630 毫米汞柱,海拔 1650 米)和低压(气压 = 425 毫米汞柱,海拔 4875 米)下在低压室中进行。在低碳酸血症(夹闭 PetCO2 至 40 毫托)下进行的一项额外试验,研究了从 75%到 100%Wpeak 时夹闭 PetCO2 的效果,以降低夹闭 PetCO2 至 50 毫托时呼吸性酸中毒和肌肉疲劳的潜在影响。在整个试验中监测代谢气体、通气、大脑中动脉 CBF 速度(经颅多普勒)、前额脉搏血氧饱和度以及脑(前额叶)和肌肉(股外侧肌)血红蛋白氧合(近红外光谱)。在常压(n = 9)和低碳酸血症(n = 11)下,将 PetCO2 夹闭至 50 毫托会提高 CBF 速度(约 40%)和改善脑血红蛋白氧合(约 15%),但会降低 Wpeak(6%)和峰值耗氧量(11%)。在低碳酸血症(n = 6)下,在接近最大努力时将 PetCO2 夹闭至 40 毫托也会改善脑氧合(约 15%),但再次限制了 Wpeak(5%)。这些发现表明,通过 CO2 介导的血管扩张增加脑氧输送量并不能改善递增运动表现,至少在伴有呼吸性酸中毒时是这样。