Suppr超能文献

脑氧输送是否限制递增运动表现?

Does cerebral oxygen delivery limit incremental exercise performance?

机构信息

Altitude Research Center, Department of Emergency Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.

出版信息

J Appl Physiol (1985). 2011 Dec;111(6):1727-34. doi: 10.1152/japplphysiol.00569.2011. Epub 2011 Sep 15.

Abstract

Previous studies have suggested that a reduction in cerebral oxygen delivery may limit motor drive, particularly in hypoxic conditions, where oxygen transport is impaired. We hypothesized that raising end-tidal Pco(2) (Pet(CO(2))) during incremental exercise would increase cerebral blood flow (CBF) and oxygen delivery, thereby improving peak power output (W(peak)). Amateur cyclists performed two ramped exercise tests (25 W/min) in a counterbalanced order to compare the normal, poikilocapnic response against a clamped condition, in which Pet(CO(2)) was held at 50 Torr throughout exercise. Tests were performed in normoxia (barometric pressure = 630 mmHg, 1,650 m) and hypoxia (barometric pressure = 425 mmHg, 4,875 m) in a hypobaric chamber. An additional trial in hypoxia investigated effects of clamping at a lower Pet(CO(2)) (40 Torr) from ∼75 to 100% W(peak) to reduce potential influences of respiratory acidosis and muscle fatigue imposed by clamping Pet(CO(2)) at 50 Torr. Metabolic gases, ventilation, middle cerebral artery CBF velocity (transcranial Doppler), forehead pulse oximetry, and cerebral (prefrontal) and muscle (vastus lateralis) hemoglobin oxygenation (near infrared spectroscopy) were monitored across trials. Clamping Pet(CO(2)) at 50 Torr in both normoxia (n = 9) and hypoxia (n = 11) elevated CBF velocity (∼40%) and improved cerebral hemoglobin oxygenation (∼15%), but decreased W(peak) (6%) and peak oxygen consumption (11%). Clamping at 40 Torr near maximal effort in hypoxia (n = 6) also improved cerebral oxygenation (∼15%), but again limited W(peak) (5%). These findings demonstrate that increasing mass cerebral oxygen delivery via CO(2)-mediated vasodilation does not improve incremental exercise performance, at least when accompanied by respiratory acidosis.

摘要

先前的研究表明,脑氧输送的减少可能会限制运动驱动力,特别是在缺氧的情况下,因为氧的输送会受到损害。我们假设在递增运动过程中提高呼气末二氧化碳分压(PetCO2)会增加脑血流量(CBF)和氧输送,从而提高峰值功率输出(Wpeak)。业余自行车运动员在反平衡的顺序下进行了两次递增运动测试(25 W/min),以比较正常、高碳酸血症的反应与夹闭条件下的反应,在夹闭条件下,整个运动过程中 PetCO2 保持在 50 毫托。测试在常压(气压 = 630 毫米汞柱,海拔 1650 米)和低压(气压 = 425 毫米汞柱,海拔 4875 米)下在低压室中进行。在低碳酸血症(夹闭 PetCO2 至 40 毫托)下进行的一项额外试验,研究了从 75%到 100%Wpeak 时夹闭 PetCO2 的效果,以降低夹闭 PetCO2 至 50 毫托时呼吸性酸中毒和肌肉疲劳的潜在影响。在整个试验中监测代谢气体、通气、大脑中动脉 CBF 速度(经颅多普勒)、前额脉搏血氧饱和度以及脑(前额叶)和肌肉(股外侧肌)血红蛋白氧合(近红外光谱)。在常压(n = 9)和低碳酸血症(n = 11)下,将 PetCO2 夹闭至 50 毫托会提高 CBF 速度(约 40%)和改善脑血红蛋白氧合(约 15%),但会降低 Wpeak(6%)和峰值耗氧量(11%)。在低碳酸血症(n = 6)下,在接近最大努力时将 PetCO2 夹闭至 40 毫托也会改善脑氧合(约 15%),但再次限制了 Wpeak(5%)。这些发现表明,通过 CO2 介导的血管扩张增加脑氧输送量并不能改善递增运动表现,至少在伴有呼吸性酸中毒时是这样。

相似文献

1
Does cerebral oxygen delivery limit incremental exercise performance?
J Appl Physiol (1985). 2011 Dec;111(6):1727-34. doi: 10.1152/japplphysiol.00569.2011. Epub 2011 Sep 15.
2
Cerebrovascular responses to incremental exercise during hypobaric hypoxia: effect of oxygenation on maximal performance.
Am J Physiol Heart Circ Physiol. 2008 Jan;294(1):H164-71. doi: 10.1152/ajpheart.01104.2007. Epub 2007 Nov 21.
3
Cerebral blood flow and oxygenation at maximal exercise: the effect of clamping carbon dioxide.
Respir Physiol Neurobiol. 2011 Jan 31;175(1):176-80. doi: 10.1016/j.resp.2010.09.011. Epub 2010 Sep 25.
4
Cerebral and muscle deoxygenation, hypoxic ventilatory chemosensitivity and cerebrovascular responsiveness during incremental exercise.
Respir Physiol Neurobiol. 2009 Oct 31;169(1):24-35. doi: 10.1016/j.resp.2009.08.013. Epub 2009 Sep 1.
5
Frontal and motor cortex oxygenation during maximal exercise in normoxia and hypoxia.
J Appl Physiol (1985). 2009 Apr;106(4):1153-8. doi: 10.1152/japplphysiol.91475.2008. Epub 2009 Jan 15.
6
Cerebral hypoperfusion during hypoxic exercise following two different hypoxic exposures: independence from changes in dynamic autoregulation and reactivity.
Am J Physiol Regul Integr Comp Physiol. 2008 Nov;295(5):R1613-22. doi: 10.1152/ajpregu.90420.2008. Epub 2008 Sep 3.
7
Hypocapnia during hypoxic exercise and its impact on cerebral oxygenation, ventilation and maximal whole body O₂ uptake.
Respir Physiol Neurobiol. 2013 Jan 15;185(2):461-7. doi: 10.1016/j.resp.2012.08.012. Epub 2012 Aug 24.
8
Frontal cerebral cortex blood flow, oxygen delivery and oxygenation during normoxic and hypoxic exercise in athletes.
J Physiol. 2011 Aug 15;589(Pt 16):4027-39. doi: 10.1113/jphysiol.2011.210880. Epub 2011 Jul 4.
9
Effects of acute hypoxia on cerebral and muscle oxygenation during incremental exercise.
J Appl Physiol (1985). 2007 Jul;103(1):177-83. doi: 10.1152/japplphysiol.01460.2006. Epub 2007 Apr 12.
10
Cerebral and myocardial blood flow responses to hypercapnia and hypoxia in humans.
Am J Physiol Heart Circ Physiol. 2011 Oct;301(4):H1678-86. doi: 10.1152/ajpheart.00281.2011. Epub 2011 Jul 1.

引用本文的文献

4
Autonomic dysfunction and exercise intolerance in post-COVID-19 - An as yet underestimated organ system?
Int J Clin Health Psychol. 2024 Jan-Mar;24(1):100429. doi: 10.1016/j.ijchp.2023.100429. Epub 2023 Dec 14.
5
AltitudeOmics: effects of 16 days acclimatization to hypobaric hypoxia on muscle oxygen extraction during incremental exercise.
J Appl Physiol (1985). 2023 Oct 1;135(4):823-832. doi: 10.1152/japplphysiol.00100.2023. Epub 2023 Aug 17.
7
Impact of Exercise on Cerebrovascular Physiology and Risk of Stroke.
Stroke. 2022 Jul;53(7):2404-2410. doi: 10.1161/STROKEAHA.121.037343. Epub 2022 May 4.
9
A New Tool for Rapid Assessment of Acute Exercise-Induced Fatigue.
Front Hum Neurosci. 2022 Mar 16;16:856432. doi: 10.3389/fnhum.2022.856432. eCollection 2022.
10
Neuromuscular fatigability at high altitude: Lowlanders with acute and chronic exposure, and native highlanders.
Acta Physiol (Oxf). 2022 Apr;234(4):e13788. doi: 10.1111/apha.13788. Epub 2022 Jan 25.

本文引用的文献

1
Frontal cerebral cortex blood flow, oxygen delivery and oxygenation during normoxic and hypoxic exercise in athletes.
J Physiol. 2011 Aug 15;589(Pt 16):4027-39. doi: 10.1113/jphysiol.2011.210880. Epub 2011 Jul 4.
2
Cerebral blood flow and oxygenation at maximal exercise: the effect of clamping carbon dioxide.
Respir Physiol Neurobiol. 2011 Jan 31;175(1):176-80. doi: 10.1016/j.resp.2010.09.011. Epub 2010 Sep 25.
3
Reduced muscle activation during exercise related to brain oxygenation and metabolism in humans.
J Physiol. 2010 Jun 1;588(Pt 11):1985-95. doi: 10.1113/jphysiol.2009.186767. Epub 2010 Apr 19.
4
Nervous system function during exercise in hypoxia.
High Alt Med Biol. 2009 Summer;10(2):149-64. doi: 10.1089/ham.2008.1105.
5
Frontal and motor cortex oxygenation during maximal exercise in normoxia and hypoxia.
J Appl Physiol (1985). 2009 Apr;106(4):1153-8. doi: 10.1152/japplphysiol.91475.2008. Epub 2009 Jan 15.
6
Cerebral oxygenation decreases during exercise in humans with beta-adrenergic blockade.
Acta Physiol (Oxf). 2009 Jul;196(3):295-302. doi: 10.1111/j.1748-1716.2008.01946.x. Epub 2008 Nov 28.
7
On the mechanisms that limit oxygen uptake during exercise in acute and chronic hypoxia: role of muscle mass.
J Physiol. 2009 Jan 15;587(2):477-90. doi: 10.1113/jphysiol.2008.162271. Epub 2008 Dec 1.
9
Exercise-induced respiratory muscle fatigue: implications for performance.
J Appl Physiol (1985). 2008 Mar;104(3):879-88. doi: 10.1152/japplphysiol.01157.2007. Epub 2007 Dec 20.
10
Cerebrovascular responses to incremental exercise during hypobaric hypoxia: effect of oxygenation on maximal performance.
Am J Physiol Heart Circ Physiol. 2008 Jan;294(1):H164-71. doi: 10.1152/ajpheart.01104.2007. Epub 2007 Nov 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验