Subudhi Andrew W, Lorenz Matthew C, Fulco Charles S, Roach Robert C
Department of Biology, University of Colorado at Colorado Springs, 1420 Austin Bluffs Parkway, Colorado Springs, CO 80918, USA.
Am J Physiol Heart Circ Physiol. 2008 Jan;294(1):H164-71. doi: 10.1152/ajpheart.01104.2007. Epub 2007 Nov 21.
We sought to describe cerebrovascular responses to incremental exercise and test the hypothesis that changes in cerebral oxygenation influence maximal performance. Eleven men cycled in three conditions: 1) sea level (SL); 2) acute hypoxia [AH; hypobaric chamber, inspired Po(2) (Pi(O(2))) 86 Torr]; and 3) chronic hypoxia [CH; 4,300 m, Pi(O(2)) 86 Torr]. At maximal work rate (W(max)), fraction of inspired oxygen (Fi(O(2))) was surreptitiously increased to 0.60, while subjects were encouraged to continue pedaling. Changes in cerebral (frontal lobe) (C(OX)) and muscle (vastus lateralis) oxygenation (M(OX)) (near infrared spectroscopy), middle cerebral artery blood flow velocity (MCA V(mean); transcranial Doppler), and end-tidal Pco(2) (Pet(CO(2))) were analyzed across %W(max) (significance at P < 0.05). At SL, Pet(CO(2)), MCA V(mean), and C(OX) fell as work rate rose from 75 to 100% W(max). During AH, Pet(CO(2)) and MCA V(mean) declined from 50 to 100% W(max), while C(OX) fell from rest. With CH, Pet(CO(2)) and C(OX) dropped throughout exercise, while MCA V(mean) fell only from 75 to 100% W(max). M(OX) fell from rest to 75% W(max) at SL and AH and throughout exercise in CH. The magnitude of fall in C(OX), but not M(OX), was different between conditions (CH > AH > SL). Fi(O(2)) 0.60 at W(max) did not prolong exercise at SL, yet allowed subjects to continue for 96 +/- 61 s in AH and 162 +/- 90 s in CH. During Fi(O(2)) 0.60, C(OX) rose and M(OX) remained constant as work rate increased. Thus cerebral hypoxia appeared to impose a limit to maximal exercise during hypobaric hypoxia (Pi(O(2)) 86 Torr), since its reversal was associated with improved performance.
我们试图描述脑血管对递增运动的反应,并检验脑氧合变化影响最大运动能力这一假设。11名男性在三种条件下进行骑行:1)海平面(SL);2)急性低氧[AH;低压舱,吸入氧分压(Pi(O₂))86 Torr];3)慢性低氧[CH;海拔4300米,Pi(O₂) 86 Torr]。在最大工作率(W(max))时,在受试者继续蹬踏的同时,悄悄将吸入氧分数(Fi(O₂))提高到0.60。分析了整个%W(max)过程中脑(额叶)(C(OX))和肌肉(股外侧肌)氧合(M(OX))(近红外光谱法)、大脑中动脉血流速度(MCA V(mean);经颅多普勒)和呼气末二氧化碳分压(Pet(CO₂))的变化(P < 0.05时有统计学意义)。在SL时,随着工作率从75%升至100%W(max),Pet(CO₂)、MCA V(mean)和C(OX)下降。在AH期间,Pet(CO₂)和MCA V(mean)从50%至100%W(max)下降,而C(OX)从静息时就开始下降。在CH时,Pet(CO₂)和C(OX)在整个运动过程中下降,而MCA V(mean)仅在75%至100%W(max)时下降。在SL和AH时,M(OX)从静息下降到75%W(max),在CH时整个运动过程中均下降。不同条件下C(OX)下降的幅度不同(CH > AH > SL),而M(OX)下降幅度无差异。在W(max)时Fi(O₂)为0.60,在SL时并未延长运动时间,但在AH时受试者可继续96±61秒,在CH时可继续162±90秒。在Fi(O₂)为0.60期间,随着工作率增加,C(OX)上升而M(OX)保持不变。因此,在低压低氧(Pi(O₂) 86 Torr)期间,脑缺氧似乎对最大运动能力构成限制,因为其逆转与运动能力改善相关。