Department of Genetics, Evolution and Environment, University College London, London, UK.
Bioessays. 2011 Nov;33(11):860-9. doi: 10.1002/bies.201100051. Epub 2011 Sep 16.
Many conserved eukaryotic traits, including apoptosis, two sexes, speciation and ageing, can be causally linked to a bioenergetic requirement for mitochondrial genes. Mitochondrial genes encode proteins involved in cell respiration, which interact closely with proteins encoded by nuclear genes. Functional respiration requires the coadaptation of mitochondrial and nuclear genes, despite divergent tempi and modes of evolution. Free-radical signals emerge directly from the biophysics of mosaic respiratory chains encoded by two genomes prone to mismatch, with apoptosis being the default penalty for compromised respiration. Selection for genomic matching is facilitated by two sexes, and optimizes fitness, adaptability and fertility in youth. Mismatches cause infertility, low fitness, hybrid breakdown, and potentially speciation. The dynamics of selection for mitonuclear function optimize fitness over generations, but the same selective processes also operate within generations, driving ageing and age-related diseases. This coherent view of eukaryotic energetics offers striking insights into infertility and age-related diseases.
许多保守的真核生物特征,包括细胞凋亡、两性生殖、物种形成和衰老,都可以与线粒体基因的生物能量需求产生因果关系。线粒体基因编码参与细胞呼吸的蛋白质,这些蛋白质与核基因编码的蛋白质密切相互作用。尽管线粒体和核基因的进化速度和模式存在分歧,但功能呼吸需要线粒体和核基因的共同适应。来自两个易发生不匹配的基因组编码的镶嵌呼吸链的自由基信号直接产生于生物物理过程,细胞凋亡是呼吸受损的默认惩罚。基因组匹配的选择由两性生殖促进,优化了青年时期的适应性和生育能力。不匹配会导致不孕、低适应性、杂种崩溃,并可能导致物种形成。选择有利的线粒体和核功能的动态过程可以使个体在几代内的适应性最大化,但相同的选择过程也在代际内起作用,导致衰老和与年龄相关的疾病。这种对真核生物能量学的连贯观点为不孕和与年龄相关的疾病提供了引人注目的见解。