Department of Biological Sciences, 101 Life Sciences Building, Auburn University, Auburn, AL 36849, U.S.A.
Department of Integrative Biology, The University of Texas, 2415 Speedway #C0930, Austin, TX 78712, U.S.A.
Biol Rev Camb Philos Soc. 2019 Jun;94(3):1089-1104. doi: 10.1111/brv.12493. Epub 2018 Dec 26.
Metazoans exist only with a continuous and rich supply of chemical energy from oxidative phosphorylation in mitochondria. The oxidative phosphorylation machinery that mediates energy conservation is encoded by both mitochondrial and nuclear genes, and hence the products of these two genomes must interact closely to achieve coordinated function of core respiratory processes. It follows that selection for efficient respiration will lead to selection for compatible combinations of mitochondrial and nuclear genotypes, and this should facilitate coadaptation between mitochondrial and nuclear genomes (mitonuclear coadaptation). Herein, we outline the modes by which mitochondrial and nuclear genomes may coevolve within natural populations, and we discuss the implications of mitonuclear coadaptation for diverse fields of study in the biological sciences. We identify five themes in the study of mitonuclear interactions that provide a roadmap for both ecological and biomedical studies seeking to measure the contribution of intergenomic coadaptation to the evolution of natural populations. We also explore the wider implications of the fitness consequences of mitonuclear interactions, focusing on central debates within the fields of ecology and biomedicine.
后生动物的存在只有通过线粒体氧化磷酸化持续而丰富的化学能量供应。介导能量守恒的氧化磷酸化机制由线粒体和核基因共同编码,因此这两个基因组的产物必须密切相互作用才能实现核心呼吸过程的协调功能。因此,对有效呼吸的选择将导致对线粒体和核基因型的兼容组合的选择,这应该有利于线粒体和核基因组之间的共同适应(线粒体-核共适应)。在此,我们概述了线粒体和核基因组在自然种群中可能共同进化的模式,并讨论了线粒体-核共适应对生物学科学各个领域研究的意义。我们确定了线粒体-核相互作用研究中的五个主题,为寻求衡量基因组间共同适应对自然种群进化贡献的生态和生物医学研究提供了路线图。我们还探讨了线粒体-核相互作用的适应后果的更广泛影响,重点关注生态学和生物医学领域的核心争论。