Suppr超能文献

用于 CO2/CH4 混合物分离的 Co3(HCOO)6 微孔金属有机骨架膜。

Co3(HCOO)6 microporous metal-organic framework membrane for separation of CO2/CH4 mixtures.

机构信息

Laboratoire Catalyse & Spectrochimie, ENSICAEN, Université de Caen, CNRS, 6 Boulevard du Marechal Juin, 14050 Caen, France.

出版信息

Chemistry. 2011 Oct 17;17(43):12076-83. doi: 10.1002/chem.201101733. Epub 2011 Sep 16.

Abstract

Continuous metal-organic framework-type Co(3)(HCOO)(6) intergrown films with a one-dimensional zigzag channel system and pore aperture of 5.5 Å are prepared by secondary growth on preseeded macroporous glass-frit disks and silicon wafers. The adsorption behavior of CO(2) or CH(4) single gases on the Co(3)(HCOO)(6) membrane is investigated by in situ IR spectroscopy. It is shown that the isosteric heats of adsorption for CO(2) (17.7 kJ mol(-1)) and CH(4) (14.4 kJ mol(-1)) do not vary with increasing amount of adsorbed gases. The higher value of isosteric heat for CO(2) is an indication of the stronger interaction between the CO(2) and the Co(3)(HCOO)(6) membrane. The Co(3)(HCOO)(6) membrane is studied by binary gas permeation of CO(2) and CH(4) at different temperatures (0, 25, and 60 °C). The membrane has CO(2)/CH(4) selectivity with a separation factor higher than 10, which is due to the unique structure and molecular sieving effect. Upon increasing the temperature from 0 to 60 °C, the preferred permeance of CO(2) over CH(4) is increased from 1.70×10(-6) to 2.09×10(-6) mol m(-2) s(-1) Pa(-1), while the separation factor for CO(2)/CH(4) shows a corresponding decrease from 15.95 to 10.37. The effective pore size of the Co(3)(HCOO)(6) material combined with the pore shape do not allow the two molecules to pass simultaneously, and once the CO(2) molecules are diffused in the micropores, the CH(4) is blocked. The supported Co(3)(HCOO)(6) membrane retains high mechanical stability after a number of thermal cycles.

摘要

连续的金属-有机骨架型 Co(3)(HCOO)(6) 互穿膜具有一维之字形通道系统和 5.5Å 的孔径,是通过在预种的大孔玻璃纤维盘和硅片上二次生长制备的。通过原位红外光谱研究了 CO(2)或 CH(4)单一气体在 Co(3)(HCOO)(6)膜上的吸附行为。结果表明,CO(2)(17.7 kJ mol(-1))和 CH(4)(14.4 kJ mol(-1))的等吸附热不随吸附气体量的增加而变化。CO(2)较高的等吸附热表明 CO(2)与 Co(3)(HCOO)(6)膜之间的相互作用更强。通过 CO(2)和 CH(4)在不同温度(0、25 和 60°C)下的二元气体渗透研究了 Co(3)(HCOO)(6)膜。该膜具有 CO(2)/CH(4)选择性,分离因子高于 10,这是由于其独特的结构和分子筛效应。当温度从 0°C 升高到 60°C 时,CO(2)相对于 CH(4)的优先透过率从 1.70×10(-6)增加到 2.09×10(-6)mol m(-2) s(-1) Pa(-1),而 CO(2)/CH(4)的分离因子相应从 15.95 降低到 10.37。Co(3)(HCOO)(6)材料的有效孔径与孔形状相结合不允许两种分子同时通过,一旦 CO(2)分子在微孔隙中扩散,CH(4)就会被阻挡。负载型 Co(3)(HCOO)(6)膜在多次热循环后仍保持较高的机械稳定性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验