Supramolecular Chemistry Laboratory, New Chemistry Unit (NCU), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O, Bangalore 560064, India.
Chemistry. 2011 Oct 24;17(44):12355-61. doi: 10.1002/chem.201101813. Epub 2011 Sep 16.
One-dimensional charge-transfer nanostructures were constructed by the supramolecular coassembly of amphiphilic (Amph-TTF) and hydrophobic (TDD-TTF) tetrathiafulvalene (TTF) donor derivatives with the acceptor 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F(4)TCNQ), in appropriate solvent composition mixtures. Microscopic analyses show that TDD-TTF retains its self-assembled fibrillar morphology even in the charge-transfer state, whereas Amph-TTF undergoes a spherical to nanorod transition upon coassembly. Time-dependent optical spectroscopy studies have shown a spontaneous change in molecular organization in TDD-TTF-based donor-acceptor costacks, which suggests a dynamic behavior, in contrast to the kinetically stable amphiphilic TTF assemblies. We have also tried to get an insight into the observed time-dependent change in molecular packing of these nanostructures through spectroscopic analyses by commenting on whether the TTF-TCNQ pair is cofacially arranged or present in the classical herringbone (orthogonal) fashion. Furthermore, our two-probe electrical measurements showed that these charge-transfer fibers are conducting. A supramolecular approach that yields 1D charge-transfer nanostructures of donor and acceptor molecules will be an alternative to existing crystalline substances with high conductivity and hence can be a viable tool for nanoelectronics.
一维电荷转移纳米结构是通过两亲(Amph-TTF)和疏水性(TDD-TTF)四硫富瓦烯(TTF)给体衍生物与受体 2,3,5,6-四氟-7,7,8,8-四氰基对醌二甲烷(F(4)TCNQ)的超分子共组装构建的,在适当的溶剂组成混合物中。微观分析表明,即使在电荷转移状态下,TDD-TTF 也保留其自组装纤维形态,而 Amph-TTF 在共组装时经历从球形到纳米棒的转变。时变光学光谱研究表明,基于 TDD-TTF 的供体-受体堆积体中的分子组织发生自发变化,这表明存在动态行为,与动力学稳定的两亲 TTF 组装体形成对比。我们还试图通过光谱分析来深入了解这些纳米结构中观察到的分子堆积的时变,通过评论 TTF-TCNQ 对是否共面排列或以经典的鲱鱼骨(正交)方式存在来评论。此外,我们的双探针电测量表明,这些电荷转移纤维是导电的。这种能够产生供体和受体分子 1D 电荷转移纳米结构的超分子方法将是具有高导电性的现有结晶物质的替代方法,因此可以成为纳米电子学的可行工具。