Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
Hum Mol Genet. 2011 Dec 15;20(24):4822-30. doi: 10.1093/hmg/ddr421. Epub 2011 Sep 15.
Expansion of trinucleotide repeats (TNRs) is responsible for a number of human neurodegenerative disorders. The molecular mechanisms that underlie TNR instability in humans are not clear. Based on results from model systems, several mechanisms for instability have been proposed, all of which focus on the ability of TNRs to form alternative structures during normal DNA transactions, including replication, DNA repair and transcription. These abnormal structures are thought to trigger changes in TNR length. We have previously shown that transcription-induced TNR instability in cultured human cells depends on several genes known to be involved in transcription-coupled nucleotide excision repair (NER). We hypothesized that NER normally functions to destabilize expanded TNRs. To test this hypothesis, we bred an Xpa null allele, which eliminates NER, into the TNR mouse model for spinocerebellar ataxia type 1 (SCA1), which carries an expanded CAG repeat tract at the endogenous mouse Sca1 locus. We find that Xpa deficiency does not substantially affect TNR instability in either the male or female germline; however, it dramatically reduces CAG repeat instability in neuronal tissues-striatum, hippocampus and cerebral cortex-but does not alter CAG instability in kidney or liver. The tissue-specific effect of Xpa deficiency represents a novel finding; it suggests that tissue-to-tissue variation in CAG repeat instability arises, in part, by different underlying mechanisms. These results validate our original findings in cultured human cells and suggest that transcription may induce NER-dependent TNR instability in neuronal tissues in humans.
三核苷酸重复序列(TNRs)的扩展是许多人类神经退行性疾病的原因。导致人类 TNR 不稳定性的分子机制尚不清楚。基于模型系统的结果,已经提出了几种不稳定的机制,所有这些机制都集中在 TNR 在正常 DNA 交易(包括复制、DNA 修复和转录)过程中形成替代结构的能力上。这些异常结构被认为会引发 TNR 长度的变化。我们之前已经表明,培养的人类细胞中转录诱导的 TNR 不稳定性取决于几个已知参与转录偶联核苷酸切除修复(NER)的基因。我们假设 NER 通常通过不稳定扩展的 TNR 起作用。为了验证这一假设,我们将缺乏 NER 的 Xpa 缺失等位基因引入 SCA1 的 TNR 小鼠模型中,该模型在其内源小鼠 Sca1 基因座中携带扩展的 CAG 重复序列。我们发现 Xpa 缺陷不会显著影响雄性或雌性生殖细胞中的 TNR 不稳定性;然而,它大大降低了神经元组织(纹状体、海马体和大脑皮层)中的 CAG 重复不稳定性,但不会改变肾脏或肝脏中的 CAG 不稳定性。Xpa 缺陷的组织特异性效应是一个新的发现;它表明 CAG 重复不稳定性的组织间差异部分是由不同的潜在机制引起的。这些结果验证了我们在培养的人类细胞中的原始发现,并表明转录可能会在人类神经元组织中诱导依赖 NER 的 TNR 不稳定性。