Earle Keith A, Schneider David J
Physics Department, University at Albany (SUNY),
AIP Conf Proc. 2011 Mar 14;1305(1):357-364. doi: 10.1063/1.3573638.
In this work, we explore the connections between parameter fitting and statistical thermodynamics using the maxent principle of Jaynes as a starting point. In particular, we show how signal averaging may be described by a suitable one particle partition function, modified for the case of a variable number of particles. These modifications lead to an entropy that is extensive in the number of measurements in the average. Systematic error may be interpreted as a departure from ideal gas behavior. In addition, we show how to combine measurements from different experiments in an unbiased way in order to maximize the entropy of simultaneous parameter fitting. We suggest that fit parameters may be interpreted as generalized coordinates and the forces conjugate to them may be derived from the system partition function. From this perspective, the parameter fitting problem may be interpreted as a process where the system (spectrum) does work against internal stresses (non-optimum model parameters) to achieve a state of minimum free energy/maximum entropy. Finally, we show how the distribution function allows us to define a geometry on parameter space, building on previous work[1, 2]. This geometry has implications for error estimation and we outline a program for incorporating these geometrical insights into an automated parameter fitting algorithm.
在这项工作中,我们以杰恩斯的最大熵原理为出发点,探索参数拟合与统计热力学之间的联系。具体而言,我们展示了如何通过一个合适的单粒子配分函数来描述信号平均,该配分函数针对可变粒子数的情况进行了修正。这些修正导致了一个在平均测量次数上具有广延性的熵。系统误差可被解释为对理想气体行为的偏离。此外,我们展示了如何以无偏的方式组合来自不同实验的测量结果,以最大化同时进行参数拟合时的熵。我们建议拟合参数可被解释为广义坐标,并且与它们共轭的力可从系统配分函数中导出。从这个角度来看,参数拟合问题可被解释为一个系统(光谱)克服内部应力(非最优模型参数)做功以达到自由能最小/熵最大状态的过程。最后,我们展示了分布函数如何使我们能够在先前工作[1, 2]的基础上,在参数空间上定义一种几何结构。这种几何结构对误差估计有影响,并且我们概述了一个将这些几何见解纳入自动参数拟合算法的程序。