Suppr超能文献

由可积离散非线性薛定谔方程描述的简单网络中的输运

Transport in simple networks described by an integrable discrete nonlinear Schrödinger equation.

作者信息

Nakamura K, Sobirov Z A, Matrasulov D U, Sawada S

机构信息

Faculty of Physics, National University of Uzbekistan, Vuzgorodok, Tashkent 100174, Uzbekistan.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Aug;84(2 Pt 2):026609. doi: 10.1103/PhysRevE.84.026609. Epub 2011 Aug 15.

Abstract

We elucidate the case in which the Ablowitz-Ladik (AL)-type discrete nonlinear Schrödinger equation (NLSE) on simple networks (e.g., star graphs and tree graphs) becomes completely integrable just as in the case of a simple one-dimensional (1D) discrete chain. The strength of cubic nonlinearity is different from bond to bond, and networks are assumed to have at least two semi-infinite bonds with one of them working as an incoming bond. The present work is a nontrivial extension of our preceding one [Sobirov et al., Phys. Rev. E 81, 066602 (2010)] on the continuum NLSE to the discrete case. We find (1) the solution on each bond is a part of the universal (bond-independent) AL soliton solution on the 1D discrete chain, but it is multiplied by the inverse of the square root of bond-dependent nonlinearity; (2) nonlinearities at individual bonds around each vertex must satisfy a sum rule; and (3) under findings 1 and 2, there exist an infinite number of constants of motion. As a practical issue, with the use of an AL soliton injected through the incoming bond, we obtain transmission probabilities inversely proportional to the strength of nonlinearity on the outgoing bonds.

摘要

我们阐明了一种情况,即在简单网络(例如星型图和树型图)上的阿布洛维茨 - 拉迪克(AL)型离散非线性薛定谔方程(NLSE)变得完全可积,就如同简单的一维(1D)离散链的情况一样。立方非线性的强度在不同键之间是不同的,并且假设网络至少有两个半无限键,其中一个作为入射键。目前的工作是我们之前关于连续 NLSE 的工作 [索比罗夫等人,《物理评论 E》81, 066602 (2010)] 到离散情况的重要扩展。我们发现:(1)每个键上的解是一维离散链上通用的(与键无关的)AL 孤子解的一部分,但它乘以了与键相关的非线性平方根的倒数;(2)每个顶点周围各个键上的非线性必须满足一个求和规则;(3)在发现(1)和(2)的情况下,存在无限多个运动常数。作为一个实际问题,通过入射键注入一个 AL 孤子,我们得到的传输概率与出射键上的非线性强度成反比。

相似文献

1
Transport in simple networks described by an integrable discrete nonlinear Schrödinger equation.
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Aug;84(2 Pt 2):026609. doi: 10.1103/PhysRevE.84.026609. Epub 2011 Aug 15.
2
Integrable nonlinear Schrödinger equation on simple networks: connection formula at vertices.
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Jun;81(6 Pt 2):066602. doi: 10.1103/PhysRevE.81.066602. Epub 2010 Jun 24.
3
Soliton solutions of an integrable nonlinear Schrödinger equation with quintic terms.
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Sep;90(3):032922. doi: 10.1103/PhysRevE.90.032922. Epub 2014 Sep 26.
4
Statistical mechanics of a discrete Schrödinger equation with saturable nonlinearity.
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Apr;87(4):044901. doi: 10.1103/PhysRevE.87.044901. Epub 2013 Apr 17.
5
Continuous and discrete Schrödinger systems with parity-time-symmetric nonlinearities.
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 May;89(5):052918. doi: 10.1103/PhysRevE.89.052918. Epub 2014 May 30.
6
Quasiradiation solution to the compound integrable model.
Phys Rev E Stat Nonlin Soft Matter Phys. 2001 May;63(5 Pt 2):056612. doi: 10.1103/PhysRevE.63.056612. Epub 2001 Apr 23.
7
Discrete rogue waves of the Ablowitz-Ladik and Hirota equations.
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Aug;82(2 Pt 2):026602. doi: 10.1103/PhysRevE.82.026602. Epub 2010 Aug 11.
8
Integrable discrete PT symmetric model.
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Sep;90(3):032912. doi: 10.1103/PhysRevE.90.032912. Epub 2014 Sep 12.
9
Mobility of discrete multibreathers in the exciton dynamics of the Davydov model with saturable nonlinearities.
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Oct;90(4):043203. doi: 10.1103/PhysRevE.90.043203. Epub 2014 Oct 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验