Nakamura K, Sobirov Z A, Matrasulov D U, Sawada S
Faculty of Physics, National University of Uzbekistan, Vuzgorodok, Tashkent 100174, Uzbekistan.
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Aug;84(2 Pt 2):026609. doi: 10.1103/PhysRevE.84.026609. Epub 2011 Aug 15.
We elucidate the case in which the Ablowitz-Ladik (AL)-type discrete nonlinear Schrödinger equation (NLSE) on simple networks (e.g., star graphs and tree graphs) becomes completely integrable just as in the case of a simple one-dimensional (1D) discrete chain. The strength of cubic nonlinearity is different from bond to bond, and networks are assumed to have at least two semi-infinite bonds with one of them working as an incoming bond. The present work is a nontrivial extension of our preceding one [Sobirov et al., Phys. Rev. E 81, 066602 (2010)] on the continuum NLSE to the discrete case. We find (1) the solution on each bond is a part of the universal (bond-independent) AL soliton solution on the 1D discrete chain, but it is multiplied by the inverse of the square root of bond-dependent nonlinearity; (2) nonlinearities at individual bonds around each vertex must satisfy a sum rule; and (3) under findings 1 and 2, there exist an infinite number of constants of motion. As a practical issue, with the use of an AL soliton injected through the incoming bond, we obtain transmission probabilities inversely proportional to the strength of nonlinearity on the outgoing bonds.
我们阐明了一种情况,即在简单网络(例如星型图和树型图)上的阿布洛维茨 - 拉迪克(AL)型离散非线性薛定谔方程(NLSE)变得完全可积,就如同简单的一维(1D)离散链的情况一样。立方非线性的强度在不同键之间是不同的,并且假设网络至少有两个半无限键,其中一个作为入射键。目前的工作是我们之前关于连续 NLSE 的工作 [索比罗夫等人,《物理评论 E》81, 066602 (2010)] 到离散情况的重要扩展。我们发现:(1)每个键上的解是一维离散链上通用的(与键无关的)AL 孤子解的一部分,但它乘以了与键相关的非线性平方根的倒数;(2)每个顶点周围各个键上的非线性必须满足一个求和规则;(3)在发现(1)和(2)的情况下,存在无限多个运动常数。作为一个实际问题,通过入射键注入一个 AL 孤子,我们得到的传输概率与出射键上的非线性强度成反比。