Zabolotskii A A
Institute of Automation and Electrometry, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia.
Phys Rev E Stat Nonlin Soft Matter Phys. 2001 May;63(5 Pt 2):056612. doi: 10.1103/PhysRevE.63.056612. Epub 2001 Apr 23.
We introduce compound integrable models composed of different systems of nonlinear equations describing evolution of fields and matter in different space and time intervals. As an example, we investigate the integrable compound model, which includes the modified nonlinear Schrödinger equation describing propagation of ultrashort pulses in an optical fiber and system of equations describing the two-wave mixing in a resonant medium with the two-photon induced Kerr-type nonlinearity. Using the matrix Riemann-Hilbert factorization approach for nonlinear evolution equations integrable in the sense of the the inverse scattering method, we study generation of ultrashort pulses in this model. We find a solution of a spectral problem on the semi-infinite interval and solve the compound model for simple but nontrivial boundary conditions for the resonant medium. We show that an asymptotic solution for light pulse propagating in the fiber is described by the quasiradiation solution to the modified nonlinear Schrödinger equation.
我们引入了由不同非线性方程组组成的复合可积模型,这些方程组描述了不同时空区间中场和物质的演化。作为一个例子,我们研究了可积复合模型,它包括描述超短脉冲在光纤中传播的修正非线性薛定谔方程,以及描述具有双光子诱导克尔型非线性的共振介质中双波混频的方程组。利用逆散射方法意义下可积的非线性演化方程的矩阵黎曼 - 希尔伯特因式分解方法,我们研究了该模型中超短脉冲的产生。我们找到了半无限区间上谱问题的一个解,并针对共振介质的简单但非平凡边界条件求解了复合模型。我们表明,光纤中传播的光脉冲的渐近解由修正非线性薛定谔方程的准辐射解描述。