de Kersauson M, El Kurdi M, David S, Checoury X, Fishman G, Sauvage S, Jakomin R, Beaudoin G, Sagnes I, Boucaud P
Institut d'Electronique Fondamentale, CNRS-Univ. Paris-Sud 11, Orsay, France.
Opt Express. 2011 Sep 12;19(19):17925-34. doi: 10.1364/OE.19.017925.
We have investigated the optical properties of tensile-strained germanium photonic wires. The photonic wires patterned by electron beam lithography (50 μm long, 1 μm wide and 500 nm thick) are obtained by growing a n-doped germanium film on a GaAs substrate. Tensile strain is transferred in the germanium layer using a Si₃N₄ stressor. Tensile strain around 0.4% achieved by the technique corresponds to an optical recombination of tensile-strained germanium involving light hole band around 1690 nm at room temperature. We show that the waveguided emission associated with a single tensile-strained germanium wire increases superlinearly as a function of the illuminated length. A 20% decrease of the spectral broadening is observed as the pump intensity is increased. All these features are signatures of optical gain. A 80 cm⁻¹ modal optical gain is derived from the variable strip length method. This value is accounted for by the calculated gain material value using a 30 band k · p formalism. These germanium wires represent potential building blocks for integration of nanoscale optical sources on silicon.
我们研究了拉伸应变锗光子线的光学特性。通过在砷化镓衬底上生长n型掺杂锗膜,获得了通过电子束光刻图案化的光子线(长50μm、宽1μm、厚500nm)。使用氮化硅应力源在锗层中传递拉伸应变。通过该技术实现的约0.4%的拉伸应变对应于室温下拉伸应变锗在1690nm附近轻空穴带的光学复合。我们表明,与单根拉伸应变锗线相关的波导发射作为照明长度的函数超线性增加。随着泵浦强度增加,观察到光谱展宽降低了20%。所有这些特征都是光学增益的标志。通过可变条带长度法得出模态光学增益为80cm⁻¹。该值由使用30能带k·p形式计算的增益材料值解释。这些锗线代表了在硅上集成纳米级光源的潜在构建块。