Nam Donguk, Sukhdeo Devanand, Roy Arunanshu, Balram Krishna, Cheng Szu-Lin, Huang Kevin Chih-Yao, Yuan Ze, Brongersma Mark, Nishi Yoshio, Miller David, Saraswat Krishna
Department of Electrical Engineering, Stanford University, Stanford, California 94305, USA.
Opt Express. 2011 Dec 19;19(27):25866-72. doi: 10.1364/OE.19.025866.
This work presents a novel method to introduce a sustainable biaxial tensile strain larger than 1% in a thin Ge membrane using a stressor layer integrated on a Si substrate. Raman spectroscopy confirms 1.13% strain and photoluminescence shows a direct band gap reduction of 100meV with enhanced light emission efficiency. Simulation results predict that a combination of 1.1% strain and heavy n(+) doping reduces the required injected carrier density for population inversion by over a factor of 60. We also present the first highly strained Ge photodetector, showing an excellent responsivity well beyond 1.6um.
这项工作提出了一种新颖的方法,通过在硅衬底上集成应力层,在薄锗膜中引入大于1%的可持续双轴拉伸应变。拉曼光谱证实了1.13%的应变,光致发光显示直接带隙降低了100meV,同时发光效率提高。模拟结果预测,1.1%的应变和重n(+)掺杂的组合可将实现粒子数反转所需的注入载流子密度降低60倍以上。我们还展示了首个高应变锗光电探测器,其在超过1.6μm的波长处具有出色的响应度。