Department of Medical Physiology, Division Heart & Lungs, University Medical Center Utrecht, The Netherlands.
Cardiovasc Res. 2012 Jan 1;93(1):12-23. doi: 10.1093/cvr/cvr252. Epub 2011 Sep 21.
Na(v)1.5, the pore forming α-subunit of the voltage-dependent cardiac Na(+) channel, is an integral membrane protein involved in the initiation and conduction of action potentials. Mutations in the gene-encoding Na(v)1.5, SCN5A, have been associated with a variety of arrhythmic disorders, including long QT, Brugada, and sick sinus syndromes as well as progressive cardiac conduction defect and atrial standstill. Moreover, alterations in the Na(v)1.5 expression level and/or sodium current density have been frequently noticed in acquired cardiac disorders, such as heart failure. The molecular mechanisms underlying these alterations are poorly understood, but are considered essential for conception of arrhythmogenesis and the development of therapeutic strategies for prevention or treatment of arrhythmias. The unravelling of such mechanisms requires critical molecular insight into the biology of Na(v)1.5 expression and function. Therefore, the aim of this review is to provide an up-to-date account of molecular determinants of normal Na(v)1.5 expression and function. The parts of the Na(v)1.5 life cycle that are discussed include (i) regulatory aspects of the SCN5A gene and transcript structure, (ii) the nature, molecular determinants, and functional consequences of Na(v)1.5 post-translational modifications, and (iii) the role of Na(v)1.5 interacting proteins in cellular trafficking. The reviewed studies have provided valuable information on how the Na(v)1.5 expression level, localization, and biophysical properties are regulated, but also revealed that our understanding of the underlying mechanisms is still limited.
钠通道 (Na v ) 1.5 是电压依赖性心肌钠通道的孔形成α亚基,是一种参与动作电位起始和传导的完整膜蛋白。编码 Na v 1.5 (SCN5A) 的基因突变与多种心律失常疾病有关,包括长 QT、Brugada 和病态窦房结综合征以及进行性心脏传导缺陷和心房静止。此外,在获得性心脏疾病中,如心力衰竭,经常注意到 Na v 1.5 表达水平和/或钠电流密度的改变。这些改变的分子机制尚未完全了解,但被认为对于心律失常发生的概念化和预防或治疗心律失常的治疗策略的发展至关重要。这些机制的揭示需要对 Na v 1.5 表达和功能的生物学进行关键的分子洞察。因此,本综述的目的是提供对正常 Na v 1.5 表达和功能的分子决定因素的最新描述。讨论的 Na v 1.5 生命周期的部分包括:(i)SCN5A 基因和转录物结构的调节方面,(ii)Na v 1.5 翻译后修饰的性质、分子决定因素和功能后果,以及(iii)Na v 1.5 相互作用蛋白在细胞运输中的作用。已有的研究提供了关于 Na v 1.5 表达水平、定位和生物物理特性如何受到调节的有价值的信息,但也表明我们对潜在机制的理解仍然有限。