Suppr超能文献

一个原始“可持续”保守细胞的建模。

The modelling of a primitive 'sustainable' conservative cell.

作者信息

Bassingthwaighte James B

机构信息

Department of Bioengineering, Box 357962, University of Washington, Seattle, WA 98195, USA.

出版信息

Philos Trans A Math Phys Eng Sci. 2001 Jun;359(1783):1055-1072. doi: 10.1098/rsta.2001.0821.

Abstract

The simple sustainable or 'eternal' cell model, assuming preservation of all proteins, is designed as a building block, a primitive element upon which one can build more complete functional cell models of various types, representing various species. In the modelling we emphasize the electrophysiological aspects, in part because these are a well-developed component of cell models and because membrane potentials and their fluctuations have been generally omitted from metabolically oriented cell models in the past. Fluctuations in membrane potential deserve heightened consideration because probably all cells have negative intracellular potentials and most cells demonstrate electrical activity with vesicular extrusion, receptor occupancy, as well as with stimulated excitation resulting in regenerative depolarization. The emphasis is on the balances of mass, charge, and of chemical species while accounting for substrate uptake, metabolism and metabolite loss from the cell. By starting with a primitive representation we emphasize the conservation ideas. As more advanced models are generated they must adhere to the same basic principles as are required for the most primitive incomplete model.

摘要

简单的可持续或“永恒”细胞模型假设所有蛋白质都得以保存,它被设计为一个构建模块,即一种原始元素,在此基础上可以构建代表各种物种的、更完整的各类功能细胞模型。在建模过程中,我们强调电生理方面,部分原因是这些是细胞模型中一个发展完善的组成部分,还因为过去以代谢为导向的细胞模型通常忽略了膜电位及其波动。膜电位的波动值得更多关注,因为可能所有细胞的细胞内电位均为负,并且大多数细胞在囊泡外排、受体占据以及刺激激发导致再生性去极化时都表现出电活动。重点在于质量、电荷和化学物质的平衡,同时要考虑细胞对底物的摄取、代谢以及代谢产物的损失。通过从原始表示开始,我们强调守恒概念。随着生成更高级的模型,它们必须遵循与最原始的不完整模型相同的基本原理。

相似文献

1
The modelling of a primitive 'sustainable' conservative cell.
Philos Trans A Math Phys Eng Sci. 2001 Jun;359(1783):1055-1072. doi: 10.1098/rsta.2001.0821.
2
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
Phys Biol. 2013 Aug;10(4):040301. doi: 10.1088/1478-3975/10/4/040301. Epub 2013 Aug 2.
6
Efficient conservative ADER schemes based on WENO reconstruction and space-time predictor in primitive variables.
Comput Astrophys Cosmol. 2016;3(1):1. doi: 10.1186/s40668-015-0014-x. Epub 2016 Jan 13.
7
Microfilaments in cellular and developmental processes.
Science. 1971 Jan 15;171(3967):135-43. doi: 10.1126/science.171.3967.135.
9
Thinking about the action potential: the nerve signal as a window to the physical principles guiding neuronal excitability.
Front Cell Neurosci. 2023 Aug 28;17:1232020. doi: 10.3389/fncel.2023.1232020. eCollection 2023.

引用本文的文献

1
Reproducibility in Computational Neuroscience Models and Simulations.
IEEE Trans Biomed Eng. 2016 Oct;63(10):2021-35. doi: 10.1109/TBME.2016.2539602. Epub 2016 Mar 8.
2
Interpreting genetic effects through models of cardiac electromechanics.
Am J Physiol Heart Circ Physiol. 2012 Dec 1;303(11):H1294-303. doi: 10.1152/ajpheart.00121.2012. Epub 2012 Oct 5.
3
Modeling to link regional myocardial work, metabolism and blood flows.
Ann Biomed Eng. 2012 Nov;40(11):2379-98. doi: 10.1007/s10439-012-0613-5. Epub 2012 Aug 23.
4
Mechanical changes in the rat right ventricle with decellularization.
J Biomech. 2012 Mar 15;45(5):842-9. doi: 10.1016/j.jbiomech.2011.11.025. Epub 2011 Dec 30.
5
Strategies and Tactics in Multiscale Modeling of Cell-to-Organ Systems.
Proc IEEE Inst Electr Electron Eng. 2006 Apr;94(4):819-830. doi: 10.1109/JPROC.2006.871775.
6
Cooperativity and specificity in enzyme kinetics: a single-molecule time-based perspective.
Biophys J. 2008 Jul;95(1):10-7. doi: 10.1529/biophysj.108.131771. Epub 2008 Apr 25.
7
Simultaneous blood-tissue exchange of oxygen, carbon dioxide, bicarbonate, and hydrogen ion.
Ann Biomed Eng. 2006 Jul;34(7):1129-48. doi: 10.1007/s10439-005-9066-4. Epub 2006 May 30.
8
A biophysical model of the mitochondrial respiratory system and oxidative phosphorylation.
PLoS Comput Biol. 2005 Sep;1(4):e36. doi: 10.1371/journal.pcbi.0010036. Epub 2005 Sep 9.
9
Multiscale modeling of cardiac cellular energetics.
Ann N Y Acad Sci. 2005 Jun;1047:395-424. doi: 10.1196/annals.1341.035.
10
The computational integrated myocyte: a view into the virtual heart.
Ann N Y Acad Sci. 2004 May;1015:391-404. doi: 10.1196/annals.1302.034.

本文引用的文献

1
POTENTIAL, IMPEDANCE, AND RECTIFICATION IN MEMBRANES.
J Gen Physiol. 1943 Sep 20;27(1):37-60. doi: 10.1085/jgp.27.1.37.
2
Stoichiometric model of Escherichia coli metabolism: incorporation of growth-rate dependent biomass composition and mechanistic energy requirements.
Biotechnol Bioeng. 1997 Nov 20;56(4):398-421. doi: 10.1002/(SICI)1097-0290(19971120)56:4<398::AID-BIT6>3.0.CO;2-J.
3
The effect of sodium ions on the electrical activity of giant axon of the squid.
J Physiol. 1949 Mar 1;108(1):37-77. doi: 10.1113/jphysiol.1949.sp004310.
4
DAMPED SINUSOIDAL OSCILLATIONS OF CYTOPLASMIC REDUCED PYRIDINE NUCLEOTIDE IN YEAST CELLS.
Proc Natl Acad Sci U S A. 1964 Jun;51(6):1244-51. doi: 10.1073/pnas.51.6.1244.
5
Interactions between motoneurones and muscles in respect of the characteristic speeds of their responses.
J Physiol. 1960 Feb;150(2):417-39. doi: 10.1113/jphysiol.1960.sp006395.
6
Differentiation of fast and slow muscles in the cat hind limb.
J Physiol. 1960 Feb;150(2):399-416. doi: 10.1113/jphysiol.1960.sp006394.
7
A quantitative description of membrane current and its application to conduction and excitation in nerve.
J Physiol. 1952 Aug;117(4):500-44. doi: 10.1113/jphysiol.1952.sp004764.
8
ATP synthesis by the reverse of the sarcoplasmic calcium pump.
FEBS Lett. 1971 Jan 30;12(5):271-272. doi: 10.1016/0014-5793(71)80196-5.
9
Strategies for the physiome project.
Ann Biomed Eng. 2000 Aug;28(8):1043-58. doi: 10.1114/1.1313771.
10
Muscle, genes and athletic performance.
Sci Am. 2000 Sep;283(3):48-55. doi: 10.1038/scientificamerican0900-48.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验