Suppr超能文献

硒化铅量子点的光伏性能。

Photovoltaic performance of ultrasmall PbSe quantum dots.

机构信息

Department of Chemistry, University of California, Berkeley, California, USA.

出版信息

ACS Nano. 2011 Oct 25;5(10):8140-7. doi: 10.1021/nn202786g. Epub 2011 Oct 3.

Abstract

We investigated the effect of PbSe quantum dot size on the performance of Schottky solar cells made in an ITO/PEDOT/PbSe/aluminum structure, varying the PbSe nanoparticle diameter from 1 to 3 nm. In this highly confined regime, we find that the larger particle bandgap can lead to higher open-circuit voltages (∼0.6 V), and thus an increase in overall efficiency compared to previously reported devices of this structure. To carry out this study, we modified existing synthesis methods to obtain ultrasmall PbSe nanocrystals with diameters as small as 1 nm, where the nanocrystal size is controlled by adjusting the growth temperature. As expected, we find that photocurrent decreases with size due to reduced absorption and increased recombination, but we also find that the open-circuit voltage begins to decrease for particles with diameters smaller than 2 nm, most likely due to reduced collection efficiency. Owing to this effect, we find peak performance for devices made with PbSe dots with a first exciton energy of ∼1.6 eV (2.3 nm diameter), with a typical efficiency of 3.5%, and a champion device efficiency of 4.57%. Comparing the external quantum efficiency of our devices to an optical model reveals that the photocurrent is also strongly affected by the coherent interference in the thin film due to Fabry-Pérot cavity modes within the PbSe layer. Our results demonstrate that even in this simple device architecture, fine-tuning of the nanoparticle size can lead to substantial improvements in efficiency.

摘要

我们研究了 PbSe 量子点尺寸对 ITO/PEDOT/PbSe/铝结构肖特基太阳能电池性能的影响,其中 PbSe 纳米颗粒的直径从 1 纳米变化到 3 纳米。在这种高度受限的情况下,我们发现较大的粒子带隙可以导致更高的开路电压(约 0.6 V),从而与之前报道的这种结构的器件相比,整体效率有所提高。为了进行这项研究,我们改进了现有的合成方法,以获得直径小至 1 纳米的超小 PbSe 纳米晶体,其中纳米晶体的尺寸通过调整生长温度来控制。正如预期的那样,我们发现由于吸收减少和复合增加,光电流随尺寸减小而减小,但我们也发现开路电压对于直径小于 2 纳米的粒子开始减小,最可能的原因是收集效率降低。由于这种效应,我们发现具有约 1.6 eV(2.3nm 直径)第一激子能量的 PbSe 点制成的器件的性能达到峰值,典型效率为 3.5%,冠军器件效率为 4.57%。将我们的器件的外量子效率与光学模型进行比较表明,光电流也受到由于 PbSe 层中的 Fabry-Pérot 腔模式引起的薄膜中的相干干扰的强烈影响。我们的结果表明,即使在这种简单的器件结构中,对纳米颗粒尺寸的微调也可以导致效率的大幅提高。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验