Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK.
ACS Nano. 2013 May 28;7(5):4210-20. doi: 10.1021/nn400656n. Epub 2013 Apr 2.
Recent research has pushed the efficiency of colloidal quantum dot solar cells toward a level that spurs commercial interest. Quantum dot/metal oxide bilayers form the most efficient colloidal quantum dot solar cells, and most studies have advanced the understanding of the quantum dot component. We study the interfacial recombination process in depleted heterojunction colloidal quantum dot (QD) solar cells formed with ZnO as the oxide by varying (i) the carrier concentration of the ZnO layer and (ii) the density of intragap recombination sites in the QD layer. We find that the open-circuit voltage and efficiency of PbS QD/ZnO devices can be improved by 50% upon doping of the ZnO with nitrogen to reduce its carrier concentration. In contrast, doping the ZnO did not change the performance of PbSe QD/ZnO solar cells. We use X-ray photoemission spectroscopy, ultraviolet photoemission spectroscopy, transient photovoltage decay measurements, transient absorption spectroscopy, and intensity-dependent photocurrent measurements to investigate the origin of this effect. We find a significant density of intragap states within the band gap of the PbS quantum dots. These states facilitate recombination at the PbS/ZnO interface, which can be suppressed by reducing the density of occupied states in the ZnO. For the PbSe QD/ZnO solar cells, where fewer intragap states are observed in the quantum dots, the interfacial recombination channel does not limit device performance. Our study sheds light on the mechanisms of interfacial recombination in colloidal quantum dot solar cells and emphasizes the influence of quantum dot intragap states and metal oxide properties on this loss pathway.
最近的研究推动了胶体量子点太阳能电池的效率达到了激发商业兴趣的水平。量子点/金属氧化物双层结构形成了最有效的胶体量子点太阳能电池,并且大多数研究都加深了对量子点组件的理解。我们通过改变(i) ZnO 层的载流子浓度和(ii)量子点层中的带间复合中心密度,研究了耗尽异质结胶体量子点(QD)太阳能电池中界面复合过程。我们发现,通过氮掺杂来降低 ZnO 的载流子浓度,可以将 PbS QD/ZnO 器件的开路电压和效率提高 50%。相比之下,掺杂 ZnO 并没有改变 PbSe QD/ZnO 太阳能电池的性能。我们使用 X 射线光电子能谱、紫外光电子能谱、瞬态光电压衰减测量、瞬态吸收光谱和强度依赖光电流测量来研究这种效应的起源。我们发现 PbS 量子点带隙内存在大量的带内态。这些状态促进了 PbS/ZnO 界面处的复合,而通过减少 ZnO 中占据态的密度可以抑制复合。对于 PbSe QD/ZnO 太阳能电池,由于量子点中观察到的带内态较少,界面复合通道不会限制器件性能。我们的研究揭示了胶体量子点太阳能电池中界面复合的机制,并强调了量子点带内态和金属氧化物性质对这种损耗途径的影响。