Suppr超能文献

一种用于头颈部肿瘤 DCE-MRI 分析的五彩色标映射方法。

A five-colour colour-coded mapping method for DCE-MRI analysis of head and neck tumours.

机构信息

Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, NT, Hong Kong.

出版信息

Clin Radiol. 2012 Mar;67(3):216-23. doi: 10.1016/j.crad.2011.07.052. Epub 2011 Sep 21.

Abstract

AIM

To devise a method to convert the time-intensity curves (TICs) of head and neck dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) data into a pixel-by-pixel colour-coded map for identifying normal tissues and tumours.

MATERIALS AND METHODS

Twenty-three patients with head and neck squamous cell carcinoma (HNSCC) underwent DCE-MRI. TIC patterns of primary tumours, metastatic nodes, and normal tissues were assessed and a program was devised to convert the patterns into a classified colour-coded map. The enhancement patterns of tumours and normal tissue structures were evaluated and categorized into nine grades (0-8) based on the predominance of coloured pixels on maps.

RESULTS

Five identified TIC patterns were converted into a colour-coded map consisting of red (maximum enhancement), brown (continuous slow rise-up), yellow (rapid wash-in and wash-out), green (rapid wash-in and plateau), and blue (rapid wash-in and rise-up). The colour-coded map distinguished all 21 primary tumours and 15 metastatic nodes from normal structures. Primary tumours and metastatic nodes were colour coded as predominantly yellow (grades 1-2) in 17/21 and 6/15, green (grades 3-5) in 3/21 and 5/15, and blue (grades 6-7) in 1/21 and 4/15, respectively. Vessels were coded red in 46/46 (grade 0) and muscles were coded brown in 23/23 (grade 8). Salivary glands, thyroid glands, and palatine tonsils were coded into predominantly yellow (grade 1) in 46/46 and 10/10 and 18/22, respectively.

CONCLUSION

DCE-MRI derived five-colour-coded mapping provides an objective easy-to-interpret method to assess the dynamic enhancement pattern of head and neck cancers.

摘要

目的

设计一种方法,将头颈部动态对比增强(DCE)磁共振成像(MRI)数据的时间-强度曲线(TIC)转化为逐像素彩色编码图,以识别正常组织和肿瘤。

材料和方法

23 例头颈部鳞状细胞癌(HNSCC)患者接受 DCE-MRI 检查。评估原发性肿瘤、转移性淋巴结和正常组织的 TIC 模式,并设计一种程序将模式转化为分类彩色编码图。根据地图上彩色像素的优势,评估和分类肿瘤和正常组织结构的增强模式为 9 个等级(0-8)。

结果

5 种识别的 TIC 模式被转化为彩色编码图,包括红色(最大增强)、棕色(连续缓慢上升)、黄色(快速注入和洗脱)、绿色(快速注入和平台期)和蓝色(快速注入和上升)。彩色编码图将 21 个原发性肿瘤和 15 个转移性淋巴结与正常结构区分开来。21 个原发性肿瘤和 15 个转移性淋巴结中有 17/21 和 6/15 被编码为主要为黄色(1-2 级),3/21 和 5/15 为绿色(3-5 级),1/21 和 4/15 为蓝色(6-7 级)。46/46 个血管编码为红色(0 级),23/23 个肌肉编码为棕色(8 级)。46/46 个唾液腺、甲状腺和腭扁桃体被编码为主要为黄色(1 级),10/10 和 18/22 个被编码为黄色和绿色(1-2 级)。

结论

DCE-MRI 衍生的五彩色编码图提供了一种客观、易于解释的方法,用于评估头颈部癌症的动态增强模式。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验