Suppr超能文献

弱电鱼中不同中脑神经元亚群对自然刺激的稀疏和密集编码。

Sparse and dense coding of natural stimuli by distinct midbrain neuron subpopulations in weakly electric fish.

机构信息

Department of Physiology, McGill University, Montreal, Quebec, Canada.

出版信息

J Neurophysiol. 2011 Dec;106(6):3102-18. doi: 10.1152/jn.00588.2011. Epub 2011 Sep 21.

Abstract

While peripheral sensory neurons respond to natural stimuli with a broad range of spatiotemporal frequencies, central neurons instead respond sparsely to specific features in general. The nonlinear transformations leading to this emergent selectivity are not well understood. Here we characterized how the neural representation of stimuli changes across successive brain areas, using the electrosensory system of weakly electric fish as a model system. We found that midbrain torus semicircularis (TS) neurons were on average more selective in their responses than hindbrain electrosensory lateral line lobe (ELL) neurons. Further analysis revealed two categories of TS neurons: dense coding TS neurons that were ELL-like and sparse coding TS neurons that displayed selective responses. These neurons in general responded to preferred stimuli with few spikes and were mostly silent for other stimuli. We further investigated whether information about stimulus attributes was contained in the activities of ELL and TS neurons. To do so, we used a spike train metric to quantify how well stimuli could be discriminated based on spiking responses. We found that sparse coding TS neurons performed poorly even when their activities were combined compared with ELL and dense coding TS neurons. In contrast, combining the activities of as few as 12 dense coding TS neurons could lead to optimal discrimination. On the other hand, sparse coding TS neurons were better detectors of whether their preferred stimulus occurred compared with either dense coding TS or ELL neurons. Our results therefore suggest that the TS implements parallel detection and estimation of sensory input.

摘要

虽然周围感觉神经元可以对自然刺激以广泛的时空频率做出反应,但中枢神经元通常对特定特征的反应稀疏。导致这种涌现选择性的非线性转换尚不清楚。在这里,我们使用弱电鱼的电感觉系统作为模型系统,描述了刺激的神经表示如何在连续的脑区中发生变化。我们发现,中脑半规管(TS)神经元的反应平均比后脑电感觉侧线叶(ELL)神经元更具选择性。进一步的分析显示了两类 TS 神经元:与 ELL 相似的密集编码 TS 神经元和显示选择性反应的稀疏编码 TS 神经元。这些神经元通常对优选刺激的反应只有少数几个尖峰,而对其他刺激则大多处于沉默状态。我们进一步研究了刺激属性的信息是否包含在 ELL 和 TS 神经元的活动中。为此,我们使用尖峰序列度量来量化根据尖峰反应可以多好地区分刺激。我们发现,即使将其活动结合起来,稀疏编码 TS 神经元的性能也很差,与 ELL 和密集编码 TS 神经元相比。相比之下,仅将 12 个密集编码 TS 神经元的活动组合起来,就可以实现最佳的区分。另一方面,与密集编码 TS 或 ELL 神经元相比,稀疏编码 TS 神经元更能检测到它们的首选刺激是否发生。因此,我们的结果表明,TS 实现了对感觉输入的并行检测和估计。

相似文献

3
Population Coding of Natural Electrosensory Stimuli by Midbrain Neurons.中脑神经元对自然电感觉刺激的群体编码。
J Neurosci. 2021 Apr 28;41(17):3822-3841. doi: 10.1523/JNEUROSCI.2232-20.2021. Epub 2021 Mar 9.

引用本文的文献

3
An end-to-end model of active electrosensation.主动电感知的端到端模型。
Curr Biol. 2025 May 19;35(10):2295-2306.e4. doi: 10.1016/j.cub.2025.03.074. Epub 2025 Apr 23.
9
Population Coding of Natural Electrosensory Stimuli by Midbrain Neurons.中脑神经元对自然电感觉刺激的群体编码。
J Neurosci. 2021 Apr 28;41(17):3822-3841. doi: 10.1523/JNEUROSCI.2232-20.2021. Epub 2021 Mar 9.

本文引用的文献

1
Coding movement direction by burst firing in electrosensory neurons.用电感神经元的爆发式放电来编码运动方向。
J Neurophysiol. 2011 Oct;106(4):1954-68. doi: 10.1152/jn.00116.2011. Epub 2011 Jul 20.
2
Efficient computation via sparse coding in electrosensory neural networks.通过电感受神经网络中的稀疏编码进行高效计算。
Curr Opin Neurobiol. 2011 Oct;21(5):752-60. doi: 10.1016/j.conb.2011.05.016. Epub 2011 Jun 16.
3
Recoding of sensory information across the retinothalamic synapse.视网膜丘脑突触的感觉信息重编码。
J Neurosci. 2010 Oct 13;30(41):13567-77. doi: 10.1523/JNEUROSCI.0910-10.2010.
5
Neural heterogeneity and efficient population codes for communication signals.神经异质性与通讯信号的高效群体编码
J Neurophysiol. 2010 Nov;104(5):2543-55. doi: 10.1152/jn.00256.2010. Epub 2010 Jul 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验