Suppr超能文献

利用荧光显微镜研究气-液界面处的蛋白质组装。

Protein assembly at the air-water interface studied by fluorescence microscopy.

机构信息

Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.

出版信息

Langmuir. 2011 Nov 1;27(21):12775-81. doi: 10.1021/la203053g. Epub 2011 Oct 3.

Abstract

Protein assembly at the air-water interface (AWI) occurs naturally in many biological processes and provides a method for creating biomaterials. However, the factors that control protein self-assembly at the AWI and the dynamic processes that occur during adsorption are still underexplored. Using fluorescence microscopy, we investigated assembly at the AWI of a model protein, human serum albumin minimally labeled with Texas Red fluorophore. Static and dynamic information was obtained under low subphase concentrations. By varying the solution protein concentration, ionic strength, and redox state, we changed the microstructure of protein assembly at the AWI accordingly. The addition of pluronic surfactant caused phase segregation to occur at the AWI, with fluid surfactant domains and more rigid protein domains revealed by fluorescence recovery after photobleaching experiments. Protein domains were observed to coalesce during this competitive adsorption process.

摘要

蛋白质在气-液界面(AWI)的组装在许多生物过程中自然发生,为生物材料的创建提供了一种方法。然而,控制蛋白质在 AWI 处自组装的因素以及在吸附过程中发生的动态过程仍未得到充分探索。本研究使用荧光显微镜,研究了经 Texas Red 荧光染料最小标记的模型蛋白人血清白蛋白在 AWI 处的组装情况。在低亚相浓度下获得了静态和动态信息。通过改变溶液中蛋白质的浓度、离子强度和氧化还原状态,我们相应地改变了 AWI 处蛋白质组装的微观结构。添加普朗尼克表面活性剂会导致 AWI 处发生相分离,荧光恢复后光漂白实验揭示了流体表面活性剂域和更刚性的蛋白质域。在这个竞争吸附过程中,观察到蛋白质域发生聚结。

相似文献

1
Protein assembly at the air-water interface studied by fluorescence microscopy.
Langmuir. 2011 Nov 1;27(21):12775-81. doi: 10.1021/la203053g. Epub 2011 Oct 3.
2
Measuring interactions between polydimethylsiloxane and serum proteins at the air-water interface.
Langmuir. 2013 Jul 30;29(30):9420-7. doi: 10.1021/la401619s. Epub 2013 Jul 15.
3
Protein-lipid interactions at the air/water interface.
Phys Chem Chem Phys. 2005 Oct 7;7(19):3478-85. doi: 10.1039/b506558p. Epub 2005 Aug 19.
4
Dynamics of surfactant sorption at the air/water interface: continuous-flow tensiometry.
J Colloid Interface Sci. 2003 May 1;261(1):170-9. doi: 10.1016/s0021-9797(02)00241-2.
5
Phase transitions in films of lung surfactant at the air-water interface.
Biophys J. 1998 Jun;74(6):2983-95. doi: 10.1016/S0006-3495(98)78005-1.
6
Effect of charge on protein preferred orientation at the air-water interface in cryo-electron microscopy.
J Struct Biol. 2021 Dec;213(4):107783. doi: 10.1016/j.jsb.2021.107783. Epub 2021 Aug 25.
7
Initial Conformation of Adsorbed Proteins at an Air-Water Interface.
J Phys Chem B. 2018 May 3;122(17):4662-4666. doi: 10.1021/acs.jpcb.8b01039. Epub 2018 Apr 20.
8
Structure of Human Serum Albumin at a Foam Surface.
J Agric Food Chem. 2024 Apr 17;72(15):8774-8783. doi: 10.1021/acs.jafc.3c09357. Epub 2024 Apr 8.
9
Critical role of interfaces and agitation on the nucleation of Abeta amyloid fibrils at low concentrations of Abeta monomers.
Biochim Biophys Acta. 2010 Apr;1804(4):986-95. doi: 10.1016/j.bbapap.2010.01.012. Epub 2010 Jan 25.
10
Visualizing monolayers with a water-soluble fluorophore to quantify adsorption, desorption, and the double layer.
Proc Natl Acad Sci U S A. 2015 Feb 24;112(8):E826-35. doi: 10.1073/pnas.1419033112. Epub 2015 Feb 9.

引用本文的文献

1
Amphiphilic proteins coassemble into multiphasic condensates and act as biomolecular surfactants.
Proc Natl Acad Sci U S A. 2021 Dec 21;118(51). doi: 10.1073/pnas.2109967118.
3
Spatial-Temporal Cellular Bioeffects from Acoustic Droplet Vaporization.
Theranostics. 2018 Nov 10;8(20):5731-5743. doi: 10.7150/thno.28782. eCollection 2018.
4
Current Challenges in Elucidating Respiratory Supercomplexes in Mitochondria: Methodological Obstacles.
Front Physiol. 2018 Mar 16;9:238. doi: 10.3389/fphys.2018.00238. eCollection 2018.
5
Pefluorocarbon inhibition of bubble induced Ca2+ transients in an in vitro model of vascular gas embolism.
Exp Biol Med (Maywood). 2014 Jan;239(1):116-22. doi: 10.1177/1535370213506434. Epub 2013 Oct 16.
6
Surfactant reduction of cerebral infarct size and behavioral deficit in a rat model of cerebrovascular arterial gas embolism.
J Appl Physiol (1985). 2013 Sep;115(6):868-76. doi: 10.1152/japplphysiol.01382.2012. Epub 2013 Jul 11.
7
Air bubble contact with endothelial cells causes a calcium-independent loss in mitochondrial membrane potential.
PLoS One. 2012;7(10):e47254. doi: 10.1371/journal.pone.0047254. Epub 2012 Oct 16.
8
Human islet amyloid polypeptide at the air-aqueous interface: a Langmuir monolayer approach.
J R Soc Interface. 2012 Nov 7;9(76):3118-28. doi: 10.1098/rsif.2012.0368. Epub 2012 Jul 11.

本文引用的文献

2
Active interfacial shear microrheology of aging protein films.
Phys Rev Lett. 2010 Jan 8;104(1):016001. doi: 10.1103/PhysRevLett.104.016001. Epub 2010 Jan 4.
3
Imaging macromolecular interactions at an interface.
Langmuir. 2010 Feb 16;26(4):2452-9. doi: 10.1021/la903703u.
4
Overcoming rapid inactivation of lung surfactant: analogies between competitive adsorption and colloid stability.
Biochim Biophys Acta. 2010 Apr;1798(4):801-28. doi: 10.1016/j.bbamem.2009.12.010. Epub 2009 Dec 22.
6
Bubble motion in a blood vessel: shear stress induced endothelial cell injury.
J Biomech Eng. 2009 Jul;131(7):074516. doi: 10.1115/1.3153310.
7
Thermodynamics, adsorption kinetics and rheology of mixed protein-surfactant interfacial layers.
Adv Colloid Interface Sci. 2009 Aug 30;150(1):41-54. doi: 10.1016/j.cis.2009.05.002. Epub 2009 May 15.
8
Current perspectives in pulmonary surfactant--inhibition, enhancement and evaluation.
Biochim Biophys Acta. 2008 Oct;1778(10):1947-77. doi: 10.1016/j.bbamem.2008.03.021. Epub 2008 Apr 8.
9
WSXM: a software for scanning probe microscopy and a tool for nanotechnology.
Rev Sci Instrum. 2007 Jan;78(1):013705. doi: 10.1063/1.2432410.
10
Gas embolism and surfactant-based intervention: implications for long-duration space-based activity.
Ann N Y Acad Sci. 2006 Sep;1077:256-69. doi: 10.1196/annals.1362.039.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验