Suppr超能文献

利用常规和先进的统计分析进行比较预测方案,以预测施肥农田径流水体中的微生物水质。

Comparative prediction schemes using conventional and advanced statistical analysis to predict microbial water quality in runoff from manured fields.

机构信息

Agricultural Safety Engineering Division, Department of Agricultural Engineering, National Academy of Agricultural Science, Rural Development Administration, Gwonson-gu, Suwon, Republic of Korea.

出版信息

J Environ Sci Health A Tox Hazard Subst Environ Eng. 2011;46(12):1392-400. doi: 10.1080/10934529.2011.606713.

Abstract

Accurate estimations of indicator microorganisms' concentrations are necessary to properly monitor water quality and manage contamination from agricultural land runoffs. In this study, Artificial Neural Networks (ANNs) and Multiple Regression Analysis (MRA) statistical methods were compared for accuracy in the prediction of manure-borne microorganisms' concentrations in runoffs from agricultural plots (0.75 m × 2 m) treated with cattle or swine manure. Field rainfall simulation tests were initiated on days 4, 32, 62, 123, and 354 between June 2002 and May 2003. Each rainfall event produced 35 mm rainfall for 30 min at the intensity of 70 mm hr(-1) at 24-intervals. Concentrations of microbial indicators were correlated with hydrological and environmental water quality parameters including water runoff, erosion, air temperature, relative humidity, solar radiation, pH, electric conductivity (EC) and turbidity to determine their impacts on microbial fate and transport. ANNs demonstrated a better ability to model the nonlinearity of land application of manure to ensure the safety of agricultural water environments.

摘要

准确估计指示微生物的浓度对于正确监测水质和管理农业土地径流污染是必要的。在本研究中,比较了人工神经网络 (ANNs) 和多元回归分析 (MRA) 统计方法在预测施用于农田 (0.75 m×2 m) 的牛粪或猪粪径流中粪肥传播微生物浓度方面的准确性。田间降雨模拟试验于 2002 年 6 月至 2003 年 5 月期间在第 4、32、62、123 和 354 天进行。每次降雨事件在 24 小时的间隔内产生 35 毫米的降雨,持续 30 分钟,强度为 70 毫米/小时。微生物指标的浓度与水文和环境水质参数相关联,包括径流量、侵蚀、空气温度、相对湿度、太阳辐射、pH 值、电导率 (EC) 和浊度,以确定它们对微生物命运和迁移的影响。ANNs 表现出更好的模拟粪肥土地施用的非线性的能力,以确保农业水环境的安全。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验