Suppr超能文献

随机昼夜节律振荡的景观、通量、相关性、共振、相干性、稳定性和关键网络布线。

Landscape, flux, correlation, resonance, coherence, stability, and key network wirings of stochastic circadian oscillation.

机构信息

State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, China.

出版信息

Biophys J. 2011 Sep 21;101(6):1335-44. doi: 10.1016/j.bpj.2011.08.012. Epub 2011 Sep 20.

Abstract

Circadian rhythms with a period of ~24 h, are natural timing machines. They are broadly distributed in living organisms, such as Neurospora, Drosophila, and mammals. The underlying natures of the rhythmic behavior have been explored by experimental and theoretical approaches. However, the global and physical natures of the oscillation under fluctuations are still not very clear. We developed a landscape and flux framework to explore the global stability and robustness of a circadian oscillation system. The potential landscape of the network is uncovered and has a global Mexican-hat shape. The height of the Mexican-hat provides a quantitative measure to evaluate the robustness and coherence of the oscillation. We found that in nonequilibrium dynamic systems, not only the potential landscape but also the probability flux are important to the dynamics of the system under intrinsic noise. Landscape attracts the systems down to the oscillation ring while flux drives the coherent oscillation on the ring. We also investigated the phase coherence and the entropy production rate of the system at different fluctuations and found that dissipations are less and the coherence is higher for larger number of molecules. We also found that the power spectrum of autocorrelation functions show resonance peak at the frequency of coherent oscillations. The peak is less prominent for smaller number of molecules and less barrier height and therefore can be used as another measure of stability of oscillations. As a consequence of nonzero probability flux, we show that the three-point correlations from the time traces show irreversibility, providing a possible way to explore the flux from the observations. Furthermore, we explored the escape time from the oscillation ring to outside at different molecular number. We found that when barrier height is higher, escape time is longer and phase coherence of oscillation is higher. Finally, we performed the global sensitivity analysis of the underlying parameters to find the key network wirings responsible for the stability of the oscillation system.

摘要

昼夜节律的周期约为 24 小时,是天然的计时机器。它们广泛存在于生物体中,如 Neurospora、Drosophila 和哺乳动物。通过实验和理论方法已经探索了节律行为的潜在本质。然而,在波动下的振荡的全局和物理性质仍然不是很清楚。我们开发了一个景观和通量框架来探索昼夜节律振荡系统的全局稳定性和鲁棒性。揭示了网络的潜在景观,并具有全局墨西哥帽形状。墨西哥帽的高度提供了一种定量的衡量标准,用于评估振荡的鲁棒性和相干性。我们发现,在非平衡动力学系统中,不仅势景观,而且概率通量对于系统在固有噪声下的动力学也很重要。景观吸引系统下降到振荡环,而通量驱动环上的相干振荡。我们还研究了系统在不同波动下的相位相干性和熵产生率,发现分子数量越大,耗散越小,相干性越高。我们还发现,自相关函数的功率谱在相干振荡的频率处显示出共振峰。对于较小的分子数量和较小的势垒高度,峰不太明显,因此可以作为振荡稳定性的另一种衡量标准。由于非零概率通量的存在,我们表明来自时间轨迹的三点相关具有不可逆性,为从观测中探索通量提供了一种可能的方法。此外,我们在不同分子数量下探索了从振荡环到外部的逃逸时间。我们发现,当势垒高度较高时,逃逸时间较长,并且振荡的相位相干性较高。最后,我们对潜在参数进行了全局敏感性分析,以找到负责振荡系统稳定性的关键网络布线。

相似文献

1
Landscape, flux, correlation, resonance, coherence, stability, and key network wirings of stochastic circadian oscillation.
Biophys J. 2011 Sep 21;101(6):1335-44. doi: 10.1016/j.bpj.2011.08.012. Epub 2011 Sep 20.
2
Potential landscape and probabilistic flux of a predator prey network.
PLoS One. 2011 Mar 15;6(3):e17888. doi: 10.1371/journal.pone.0017888.
3
Potential landscape and flux framework of nonequilibrium networks: robustness, dissipation, and coherence of biochemical oscillations.
Proc Natl Acad Sci U S A. 2008 Aug 26;105(34):12271-6. doi: 10.1073/pnas.0800579105. Epub 2008 Aug 21.
5
Robustness and coherence of a three-protein circadian oscillator: landscape and flux perspectives.
Biophys J. 2009 Dec 2;97(11):3038-46. doi: 10.1016/j.bpj.2009.09.021.
7
Potential and flux landscapes quantify the stability and robustness of budding yeast cell cycle network.
Proc Natl Acad Sci U S A. 2010 May 4;107(18):8195-200. doi: 10.1073/pnas.0910331107. Epub 2010 Apr 14.
8
Landscape and flux govern cellular mode-hopping between oscillations.
J Chem Phys. 2019 Nov 7;151(17):175101. doi: 10.1063/1.5125046.
9
Nonequilibrium landscape theory of neural networks.
Proc Natl Acad Sci U S A. 2013 Nov 5;110(45):E4185-94. doi: 10.1073/pnas.1310692110. Epub 2013 Oct 21.

引用本文的文献

1
Quantifying nonequilibrium dynamics and thermodynamics of cell fate decision making in yeast under pheromone induction.
Biophys Rev (Melville). 2023 Sep 13;4(3):031401. doi: 10.1063/5.0157759. eCollection 2023 Sep.
2
Quantifying the flux as the driving force for nonequilibrium dynamics and thermodynamics in non-Michaelis-Menten enzyme kinetics.
Proc Natl Acad Sci U S A. 2020 Jan 14;117(2):923-930. doi: 10.1073/pnas.1819572117. Epub 2019 Dec 26.
4
Discrete flux and velocity fields of probability and their global maps in reaction systems.
J Chem Phys. 2018 Nov 14;149(18):185101. doi: 10.1063/1.5050808.
5
Role of ATP Hydrolysis in Cyanobacterial Circadian Oscillator.
Sci Rep. 2017 Dec 12;7(1):17469. doi: 10.1038/s41598-017-17717-z.
6
Nonequilibrium Enhances Adaptation Efficiency of Stochastic Biochemical Systems.
PLoS One. 2016 May 19;11(5):e0155838. doi: 10.1371/journal.pone.0155838. eCollection 2016.
7
Landscape and flux reveal a new global view and physical quantification of mammalian cell cycle.
Proc Natl Acad Sci U S A. 2014 Sep 30;111(39):14130-5. doi: 10.1073/pnas.1408628111. Epub 2014 Sep 16.
8
On the dephasing of genetic oscillators.
Proc Natl Acad Sci U S A. 2014 Feb 11;111(6):2391-6. doi: 10.1073/pnas.1323433111. Epub 2014 Jan 27.
9
Eddy current and coupled landscapes for nonadiabatic and nonequilibrium complex system dynamics.
Proc Natl Acad Sci U S A. 2013 Sep 10;110(37):14930-5. doi: 10.1073/pnas.1305604110. Epub 2013 Aug 26.
10
Landscape and global stability of nonadiabatic and adiabatic oscillations in a gene network.
Biophys J. 2012 Mar 7;102(5):1001-10. doi: 10.1016/j.bpj.2012.02.002. Epub 2012 Mar 6.

本文引用的文献

1
Potential and flux landscapes quantify the stability and robustness of budding yeast cell cycle network.
Proc Natl Acad Sci U S A. 2010 May 4;107(18):8195-200. doi: 10.1073/pnas.0910331107. Epub 2010 Apr 14.
2
Delay-induced degrade-and-fire oscillations in small genetic circuits.
Phys Rev Lett. 2009 Feb 13;102(6):068105. doi: 10.1103/PhysRevLett.102.068105.
3
Potential landscape and flux framework of nonequilibrium networks: robustness, dissipation, and coherence of biochemical oscillations.
Proc Natl Acad Sci U S A. 2008 Aug 26;105(34):12271-6. doi: 10.1073/pnas.0800579105. Epub 2008 Aug 21.
4
Intrinsic noise, dissipation cost, and robustness of cellular networks: the underlying energy landscape of MAPK signal transduction.
Proc Natl Acad Sci U S A. 2008 Apr 22;105(16):6039-44. doi: 10.1073/pnas.0708708105. Epub 2008 Apr 17.
5
Roles of noise in single and coupled multiple genetic oscillators.
J Chem Phys. 2007 Mar 21;126(11):115101. doi: 10.1063/1.2539037.
6
Quantifying robustness and dissipation cost of yeast cell cycle network: the funneled energy landscape perspectives.
Biophys J. 2007 Jun 1;92(11):3755-63. doi: 10.1529/biophysj.106.094821. Epub 2007 Mar 9.
8
Self-regulating gene: an exact solution.
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Nov;72(5 Pt 1):051907. doi: 10.1103/PhysRevE.72.051907. Epub 2005 Nov 4.
9
Nonequilibrium thermodynamics and nonlinear kinetics in a cellular signaling switch.
Phys Rev Lett. 2005 Jan 21;94(2):028101. doi: 10.1103/PhysRevLett.94.028101. Epub 2005 Jan 18.
10
Fluorescence correlation spectroscopy with high-order and dual-color correlation to probe nonequilibrium steady states.
Proc Natl Acad Sci U S A. 2004 Mar 2;101(9):2828-33. doi: 10.1073/pnas.0305962101. Epub 2004 Feb 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验