Suppr超能文献

定量研究信息素诱导下酵母细胞命运决定的非平衡动力学和热力学

Quantifying nonequilibrium dynamics and thermodynamics of cell fate decision making in yeast under pheromone induction.

作者信息

Li Sheng, Liu Qiong, Wang Erkang, Wang Jin

机构信息

State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.

Department of Chemistry and of Physics and astronomy, State University of New York at Stony Brook, Stony Brook, New York 11794-3400, USA.

出版信息

Biophys Rev (Melville). 2023 Sep 13;4(3):031401. doi: 10.1063/5.0157759. eCollection 2023 Sep.

Abstract

Cellular responses to pheromone in yeast can range from gene expression to morphological and physiological changes. While signaling pathways are well studied, the cell fate decision-making during cellular polar growth is still unclear. Quantifying these cellular behaviors and revealing the underlying physical mechanism remain a significant challenge. Here, we employed a hidden Markov chain model to quantify the dynamics of cellular morphological systems based on our experimentally observed time series. The resulting statistics generated a stability landscape for state attractors. By quantifying rotational fluxes as the non-equilibrium driving force that tends to disrupt the current attractor state, the dynamical origin of non-equilibrium phase transition from four cell morphological fates to a single dominant fate was identified. We revealed that higher chemical voltage differences induced by a high dose of pheromone resulted in higher chemical currents, which will trigger a greater net input and, thus, more degrees of the detailed balance breaking. By quantifying the thermodynamic cost of maintaining morphological state stability, we demonstrated that the flux-related entropy production rate provides a thermodynamic origin for the phase transition in non-equilibrium morphologies. Furthermore, we confirmed that the time irreversibility in time series provides a practical way to predict the non-equilibrium phase transition.

摘要

酵母细胞对信息素的反应范围可以从基因表达到形态和生理变化。虽然信号通路已得到充分研究,但细胞在极性生长过程中的命运决策仍不清楚。量化这些细胞行为并揭示其潜在的物理机制仍然是一项重大挑战。在这里,我们基于实验观察到的时间序列,采用隐马尔可夫链模型来量化细胞形态系统的动力学。由此产生的统计数据为状态吸引子生成了一个稳定性景观。通过将旋转通量量化为倾向于破坏当前吸引子状态的非平衡驱动力,确定了从四种细胞形态命运到单一主导命运的非平衡相变的动力学起源。我们发现,高剂量信息素诱导的更高化学电压差会导致更高的化学电流,这将触发更大的净输入,从而导致更多程度的详细平衡破坏。通过量化维持形态状态稳定性的热力学成本,我们证明了与通量相关的熵产生率为非平衡形态中的相变提供了热力学起源。此外,我们证实时间序列中的时间不可逆性为预测非平衡相变提供了一种实用方法。

相似文献

8
Non-equilibrium early-warning signals for critical transitions in ecological systems.生态系统关键转变的非平衡早期预警信号。
Proc Natl Acad Sci U S A. 2023 Jan 31;120(5):e2218663120. doi: 10.1073/pnas.2218663120. Epub 2023 Jan 23.
10
Quantifying dissipation using fluctuating currents.使用波动电流对耗散进行量化。
Nat Commun. 2019 Apr 10;10(1):1666. doi: 10.1038/s41467-019-09631-x.

本文引用的文献

6
Centromeres License the Mitotic Condensation of Yeast Chromosome Arms.着丝粒许可酵母染色体臂有丝分裂的浓缩。
Cell. 2018 Oct 18;175(3):780-795.e15. doi: 10.1016/j.cell.2018.09.012. Epub 2018 Oct 11.
10
Nonequilibrium landscape theory of neural networks.神经网络的非平衡态景观理论。
Proc Natl Acad Sci U S A. 2013 Nov 5;110(45):E4185-94. doi: 10.1073/pnas.1310692110. Epub 2013 Oct 21.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验