Suppr超能文献

肌球蛋白结合结构域 N2B 区缺失的心肌力学特性:心脏特有的弹簧元件可提高心动周期效率。

Mechanics on myocardium deficient in the N2B region of titin: the cardiac-unique spring element improves efficiency of the cardiac cycle.

机构信息

Graduate Interdisciplinary Program in Biomedical Engineering, University of Arizona, Tucson, Arizona, USA.

出版信息

Biophys J. 2011 Sep 21;101(6):1385-92. doi: 10.1016/j.bpj.2011.06.054. Epub 2011 Sep 20.

Abstract

Titin (also known as connectin) is an intrasarcomeric muscle protein that functions as a molecular spring and generates passive tension upon muscle stretch. The N2B element is a cardiac-specific spring element within titin's extensible region. Our goal was to study the contribution of the N2B element to the mechanical properties of titin, particularly its hypothesized role in limiting energy loss during repeated stretch (diastole)-shortening (systole) cycles of the heart. We studied energy loss by measuring hysteresis from the area between the stretch and release passive force-sarcomere length curves and used both wild-type (WT) mice and N2B knockout (KO) mice in which the N2B element has been deleted. A range of protocols was used, including those that mimic physiological loading conditions. KO mice showed significant increases in hysteresis. Most prominently, in tissue that had been preconditioned with a physiological stretch-release protocol, hysteresis increased significantly from 320 ± 46 pJ/mm(2)/sarcomere in WT to 650 ± 94 pJ/mm(2)/sarcomere in N2B KO myocardium. These results are supported by experiments in which oxidative stress was used to mechanically inactivate portions of the N2B-Us of WT titin through cysteine cross-linking. Studies on muscle from which the thin filaments had been extracted (using the actin severing protein gelsolin) showed that the difference in hysteresis between WT and KO tissue cannot be explained by filament sliding-based viscosity. Instead the results suggest that hysteresis arises from within titin and most likely involves unfolding of immunoglobulin-like domains. These studies support that the mechanical function of the N2B element of titin includes reducing hysteresis and increasing the efficiency of the heart.

摘要

肌联蛋白(也称为连接蛋白)是一种位于肌节内的肌肉蛋白,它作为分子弹簧,在肌肉拉伸时产生被动张力。N2B 元件是肌联蛋白可伸展区域中的一个心脏特异性的弹簧元件。我们的目标是研究 N2B 元件对肌联蛋白机械特性的贡献,特别是它在限制心脏反复拉伸(舒张)-缩短(收缩)循环过程中能量损失方面的假设作用。我们通过测量拉伸和释放被动力-肌节长度曲线之间的滞后面积来测量能量损失,并使用野生型(WT)和 N2B 敲除(KO)小鼠,其中 N2B 元件已被删除。使用了一系列方案,包括模拟生理加载条件的方案。KO 小鼠的滞后明显增加。最显著的是,在经过生理拉伸-释放方案预适应的组织中,WT 心肌中的滞后从 320±46 pJ/mm(2)/肌节显著增加到 N2B KO 心肌中的 650±94 pJ/mm(2)/肌节。这些结果得到了实验的支持,在实验中,通过半胱氨酸交联使 WT 肌联蛋白的 N2B-Us 的部分氧化应激以机械方式失活。研究了从其中提取了细肌丝的肌肉(使用肌动蛋白切断蛋白凝胶),结果表明 WT 和 KO 组织之间滞后的差异不能用基于细丝滑动的粘性来解释。相反,结果表明滞后是由肌联蛋白内部产生的,很可能涉及免疫球蛋白样结构域的展开。这些研究表明,肌联蛋白的 N2B 元件的机械功能包括降低滞后和提高心脏效率。

相似文献

3
Molecular mechanics of cardiac titin's PEVK and N2B spring elements.
J Biol Chem. 2002 Mar 29;277(13):11549-58. doi: 10.1074/jbc.M200356200. Epub 2002 Jan 17.
4
Calcium sensitivity and the Frank-Starling mechanism of the heart are increased in titin N2B region-deficient mice.
J Mol Cell Cardiol. 2010 Sep;49(3):449-58. doi: 10.1016/j.yjmcc.2010.05.006. Epub 2010 May 23.
5
Targeted deletion of titin N2B region leads to diastolic dysfunction and cardiac atrophy.
Proc Natl Acad Sci U S A. 2007 Feb 27;104(9):3444-9. doi: 10.1073/pnas.0608543104. Epub 2007 Feb 20.
6
Molecular dissection of N2B cardiac titin's extensibility.
Biophys J. 1999 Dec;77(6):3189-96. doi: 10.1016/S0006-3495(99)77149-3.
7
Truncation of titin's elastic PEVK region leads to cardiomyopathy with diastolic dysfunction.
Circ Res. 2009 Sep 11;105(6):557-64. doi: 10.1161/CIRCRESAHA.109.200964. Epub 2009 Aug 13.
10
Mechanical properties of cardiac titin's N2B-region by single-molecule atomic force spectroscopy.
J Struct Biol. 2006 Aug;155(2):263-72. doi: 10.1016/j.jsb.2006.02.017. Epub 2006 Apr 25.

引用本文的文献

2
Structural domain in the Titin N2B-us region binds to FHL2 in a force-activation dependent manner.
Nat Commun. 2024 May 27;15(1):4496. doi: 10.1038/s41467-024-48828-7.
3
The titin N2B and N2A regions: biomechanical and metabolic signaling hubs in cross-striated muscles.
Biophys Rev. 2021 Sep 9;13(5):653-677. doi: 10.1007/s12551-021-00836-3. eCollection 2021 Oct.
4
Metformin improves diastolic function in an HFpEF-like mouse model by increasing titin compliance.
J Gen Physiol. 2019 Jan 7;151(1):42-52. doi: 10.1085/jgp.201812259. Epub 2018 Dec 19.
5
Softening the Stressed Giant Titin in Diabetes Mellitus.
Circ Res. 2018 Jul 20;123(3):315-317. doi: 10.1161/CIRCRESAHA.118.313396.
6
Reducing RBM20 activity improves diastolic dysfunction and cardiac atrophy.
J Mol Med (Berl). 2016 Dec;94(12):1349-1358. doi: 10.1007/s00109-016-1483-3. Epub 2016 Nov 26.
8
Elastic proteins in the flight muscle of Manduca sexta.
Arch Biochem Biophys. 2015 Feb 15;568:16-27. doi: 10.1016/j.abb.2014.12.033. Epub 2015 Jan 17.
9
Deletion of the titin N2B region accelerates myofibrillar force development but does not alter relaxation kinetics.
J Cell Sci. 2014 Sep 1;127(Pt 17):3666-74. doi: 10.1242/jcs.141796. Epub 2014 Jun 30.
10
S-glutathionylation of cryptic cysteines enhances titin elasticity by blocking protein folding.
Cell. 2014 Mar 13;156(6):1235-1246. doi: 10.1016/j.cell.2014.01.056.

本文引用的文献

1
Contribution of titin and extracellular matrix to passive pressure and measurement of sarcomere length in the mouse left ventricle.
J Mol Cell Cardiol. 2011 Apr;50(4):731-9. doi: 10.1016/j.yjmcc.2011.01.005. Epub 2011 Jan 19.
2
Mouse intact cardiac myocyte mechanics: cross-bridge and titin-based stress in unactivated cells.
J Gen Physiol. 2011 Jan;137(1):81-91. doi: 10.1085/jgp.201010499.
3
H2O2 alters rat cardiac sarcomere function and protein phosphorylation through redox signaling.
Am J Physiol Heart Circ Physiol. 2010 Sep;299(3):H723-30. doi: 10.1152/ajpheart.00050.2010. Epub 2010 Jun 18.
4
Calcium sensitivity and the Frank-Starling mechanism of the heart are increased in titin N2B region-deficient mice.
J Mol Cell Cardiol. 2010 Sep;49(3):449-58. doi: 10.1016/j.yjmcc.2010.05.006. Epub 2010 May 23.
5
Cardiac titin: a multifunctional giant.
Circulation. 2010 May 18;121(19):2137-45. doi: 10.1161/CIRCULATIONAHA.109.860171.
6
Modulation of titin-based stiffness by disulfide bonding in the cardiac titin N2-B unique sequence.
Biophys J. 2009 Aug 5;97(3):825-34. doi: 10.1016/j.bpj.2009.05.037.
7
Titin-based mechanical signalling in normal and failing myocardium.
J Mol Cell Cardiol. 2009 Apr;46(4):490-8. doi: 10.1016/j.yjmcc.2009.01.004.
9
Protein kinase G modulates human myocardial passive stiffness by phosphorylation of the titin springs.
Circ Res. 2009 Jan 2;104(1):87-94. doi: 10.1161/CIRCRESAHA.108.184408. Epub 2008 Nov 20.
10
Functional genomics of chicken, mouse, and human titin supports splice diversity as an important mechanism for regulating biomechanics of striated muscle.
Am J Physiol Regul Integr Comp Physiol. 2007 Aug;293(2):R557-67. doi: 10.1152/ajpregu.00001.2007. Epub 2007 May 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验