Suppr超能文献

拓扑异构酶 IIA 使超螺旋 DNA 连环体解连环。

Unlinking of supercoiled DNA catenanes by type IIA topoisomerases.

机构信息

Department of Chemistry, New York University, New York, New York, USA.

出版信息

Biophys J. 2011 Sep 21;101(6):1403-11. doi: 10.1016/j.bpj.2011.08.011. Epub 2011 Sep 20.

Abstract

It was found recently that DNA catenanes, formed during replication of circular plasmids, become positively (+) supercoiled, and the unlinking of such catenanes by type IIA topoisomerases proceeds much more efficiently than the unlinking of negatively (-) supercoiled catenanes. In an attempt to explain this striking finding we studied, by computer simulation, conformational properties of supercoiled DNA catenanes. Although the simulation showed that conformational properties of (+) and (-) supercoiled replication catenanes are very different, these properties per se do not give any advantage to (+) supercoiled over (-) supercoiled DNA catenanes for unlinking. An advantage became evident, however, when we took into account the established features of the enzymatic reaction catalyzed by the topoisomerases. The enzymes create a sharp DNA bend in the first bound DNA segment and allow for the transport of the second segment only from inside the bend to its outside. We showed that in (-) supercoiled DNA catenanes this protein-bound bent segment becomes nearly inaccessible for segments of the other linked DNA molecule, inhibiting the unlinking.

摘要

最近发现,在环形质粒复制过程中形成的 DNA 连环体变得正超螺旋化,而 IIA 拓扑异构酶对这种连环体的解连环作用比负超螺旋化的连环体的解连环作用效率更高。为了解释这一惊人的发现,我们通过计算机模拟研究了超螺旋化 DNA 连环体的构象特性。尽管模拟表明正超螺旋化和负超螺旋化复制连环体的构象特性非常不同,但这些特性本身并不能为正超螺旋化 DNA 连环体相对于负超螺旋化 DNA 连环体的解连环提供任何优势。然而,当我们考虑到拓扑异构酶催化的酶促反应的既定特征时,优势变得明显。酶在第一个结合的 DNA 片段中创建一个尖锐的 DNA 弯曲,并允许第二个片段仅从弯曲的内部运输到外部。我们表明,在负超螺旋化的 DNA 连环体中,这个与蛋白质结合的弯曲片段几乎无法接近另一个连接的 DNA 分子的片段,从而抑制了解连环。

相似文献

1
Unlinking of supercoiled DNA catenanes by type IIA topoisomerases.
Biophys J. 2011 Sep 21;101(6):1403-11. doi: 10.1016/j.bpj.2011.08.011. Epub 2011 Sep 20.
2
Simulation of DNA catenanes.
Phys Chem Chem Phys. 2009 Dec 7;11(45):10543-52. doi: 10.1039/b910812b. Epub 2009 Oct 23.
3
Human topoisomerase IIalpha rapidly relaxes positively supercoiled DNA: implications for enzyme action ahead of replication forks.
J Biol Chem. 2005 Nov 25;280(47):39337-45. doi: 10.1074/jbc.M503320200. Epub 2005 Sep 27.
4
Formation and resolution of DNA catenanes by DNA gyrase.
Cell. 1980 May;20(1):245-54. doi: 10.1016/0092-8674(80)90252-4.
5
Tightening of DNA knots by supercoiling facilitates their unknotting by type II DNA topoisomerases.
Proc Natl Acad Sci U S A. 2011 Mar 1;108(9):3608-11. doi: 10.1073/pnas.1016150108. Epub 2011 Feb 14.
6
The effect of ionic conditions on the conformations of supercoiled DNA. II. Equilibrium catenation.
J Mol Biol. 1997 Mar 28;267(2):312-23. doi: 10.1006/jmbi.1996.0877.
8
Single-molecule study of DNA unlinking by eukaryotic and prokaryotic type-II topoisomerases.
Proc Natl Acad Sci U S A. 2003 Aug 19;100(17):9820-5. doi: 10.1073/pnas.1631550100. Epub 2003 Aug 5.
9
Coupling ATP hydrolysis to DNA strand passage in type IIA DNA topoisomerases.
Biochem Soc Trans. 2005 Dec;33(Pt 6):1460-4. doi: 10.1042/BST0331460.
10
Direct measurement of DNA bending by type IIA topoisomerases: implications for non-equilibrium topology simplification.
Nucleic Acids Res. 2011 Jul;39(13):5729-43. doi: 10.1093/nar/gkr109. Epub 2011 Mar 17.

引用本文的文献

1
New Insights into the Geometry and Topology of DNA Replication Intermediates.
Biology (Basel). 2025 Apr 26;14(5):478. doi: 10.3390/biology14050478.
2
Recognition of DNA Supercoil Handedness during Catenation Catalyzed by Type II Topoisomerases.
Biochemistry. 2022 Oct 4;61(19):2148-2158. doi: 10.1021/acs.biochem.2c00370. Epub 2022 Sep 19.
3
Regulation of mitotic chromosome architecture and resolution of ultrafine anaphase bridges by PICH.
Cell Cycle. 2021 Oct;20(20):2077-2090. doi: 10.1080/15384101.2021.1970877. Epub 2021 Sep 16.
4
Unravelling the mechanisms of Type 1A topoisomerases using single-molecule approaches.
Nucleic Acids Res. 2021 Jun 4;49(10):5470-5492. doi: 10.1093/nar/gkab239.
5
The many lives of type IA topoisomerases.
J Biol Chem. 2020 May 15;295(20):7138-7153. doi: 10.1074/jbc.REV120.008286. Epub 2020 Apr 10.
6
Closing the DNA replication cycle: from simple circular molecules to supercoiled and knotted DNA catenanes.
Nucleic Acids Res. 2019 Aug 22;47(14):7182-7198. doi: 10.1093/nar/gkz586.

本文引用的文献

1
Direct measurement of DNA bending by type IIA topoisomerases: implications for non-equilibrium topology simplification.
Nucleic Acids Res. 2011 Jul;39(13):5729-43. doi: 10.1093/nar/gkr109. Epub 2011 Mar 17.
2
Positive supercoiling of mitotic DNA drives decatenation by topoisomerase II in eukaryotes.
Science. 2011 Mar 11;331(6022):1328-32. doi: 10.1126/science.1201538.
3
Sequence dependence of DNA bending rigidity.
Proc Natl Acad Sci U S A. 2010 Aug 31;107(35):15421-6. doi: 10.1073/pnas.1004809107. Epub 2010 Aug 11.
4
Simulation of DNA catenanes.
Phys Chem Chem Phys. 2009 Dec 7;11(45):10543-52. doi: 10.1039/b910812b. Epub 2009 Oct 23.
5
DNA supercoiling helps to unlink sister duplexes after replication.
Bioessays. 2010 Jan;32(1):9-12. doi: 10.1002/bies.200900143.
6
Structural insight into the quinolone-DNA cleavage complex of type IIA topoisomerases.
Nat Struct Mol Biol. 2009 Jun;16(6):667-9. doi: 10.1038/nsmb.1604. Epub 2009 May 17.
7
DNA topoisomerases: harnessing and constraining energy to govern chromosome topology.
Q Rev Biophys. 2008 Feb;41(1):41-101. doi: 10.1017/S003358350800468X.
8
Dynamics and consequences of DNA looping by the FokI restriction endonuclease.
Nucleic Acids Res. 2008 Apr;36(6):2073-81. doi: 10.1093/nar/gkn051. Epub 2008 Feb 14.
9
Structural basis for gate-DNA recognition and bending by type IIA topoisomerases.
Nature. 2007 Dec 20;450(7173):1201-5. doi: 10.1038/nature06396.
10
Probability of the site juxtaposition determines the rate of protein-mediated DNA looping.
Biophys J. 2007 Oct 15;93(8):2726-31. doi: 10.1529/biophysj.107.111245. Epub 2007 Jun 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验