Suppr超能文献

I 型拓扑异构酶的多面人生。

The many lives of type IA topoisomerases.

机构信息

Center for Chromosome Stability and Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark

出版信息

J Biol Chem. 2020 May 15;295(20):7138-7153. doi: 10.1074/jbc.REV120.008286. Epub 2020 Apr 10.

Abstract

The double-helical structure of genomic DNA is both elegant and functional in that it serves both to protect vulnerable DNA bases and to facilitate DNA replication and compaction. However, these design advantages come at the cost of having to evolve and maintain a cellular machinery that can manipulate a long polymeric molecule that readily becomes topologically entangled whenever it has to be opened for translation, replication, or repair. If such a machinery fails to eliminate detrimental topological entanglements, utilization of the information stored in the DNA double helix is compromised. As a consequence, the use of B-form DNA as the carrier of genetic information must have co-evolved with a means to manipulate its complex topology. This duty is performed by DNA topoisomerases, which therefore are, unsurprisingly, ubiquitous in all kingdoms of life. In this review, we focus on how DNA topoisomerases catalyze their impressive range of DNA-conjuring tricks, with a particular emphasis on DNA topoisomerase III (TOP3). Once thought to be the most unremarkable of topoisomerases, the many lives of these type IA topoisomerases are now being progressively revealed. This research interest is driven by a realization that their substrate versatility and their ability to engage in intimate collaborations with translocases and other DNA-processing enzymes are far more extensive and impressive than was thought hitherto. This, coupled with the recent associations of TOP3s with developmental and neurological pathologies in humans, is clearly making us reconsider their undeserved reputation as being unexceptional enzymes.

摘要

基因组 DNA 的双螺旋结构既优雅又实用,因为它既能保护易受损的 DNA 碱基,又能促进 DNA 复制和压缩。然而,这些设计优势是有代价的,需要进化和维持一种细胞机制,这种机制能够操纵一种长链聚合物,这种聚合物在需要打开进行翻译、复制或修复时很容易发生拓扑缠结。如果这种机制不能消除有害的拓扑缠结,那么存储在 DNA 双螺旋中的信息的利用就会受到损害。因此,B 型 DNA 作为遗传信息的载体必须与一种操纵其复杂拓扑结构的手段共同进化。这项任务由 DNA 拓扑异构酶来完成,因此,它们在所有生命领域中都是普遍存在的。在这篇综述中,我们重点讨论 DNA 拓扑异构酶如何催化其令人印象深刻的一系列 DNA 魔术技巧,特别强调 DNA 拓扑异构酶 III(TOP3)。这些拓扑异构酶一度被认为是最不起眼的,而这些 I 型拓扑异构酶的许多生命现在正在逐渐被揭示。这种研究兴趣是由以下认识驱动的:它们的底物多样性以及与转位酶和其他 DNA 加工酶进行密切合作的能力,比迄今为止人们认为的要广泛和令人印象深刻得多。再加上最近发现 TOP3 与人类发育和神经病理学有关联,这显然使我们重新考虑它们作为非特殊酶的不应有的声誉。

相似文献

1
The many lives of type IA topoisomerases.
J Biol Chem. 2020 May 15;295(20):7138-7153. doi: 10.1074/jbc.REV120.008286. Epub 2020 Apr 10.
2
[DNA supercoiling and topoisomerases in Escherichia coli].
Rev Latinoam Microbiol. 1995 Jul-Sep;37(3):291-304.
3
Structure and mechanism of action of type IA DNA topoisomerases.
Biochemistry (Mosc). 2009 Dec;74(13):1467-81. doi: 10.1134/s0006297909130045.
5
TOP3A coupling with replication forks and repair of TOP3A cleavage complexes.
Cell Cycle. 2024 Jan;23(2):115-130. doi: 10.1080/15384101.2024.2314440. Epub 2024 Feb 11.
8
Exploring DNA topoisomerases as targets of novel therapeutic agents in the treatment of infectious diseases.
Infect Disord Drug Targets. 2007 Mar;7(1):3-9. doi: 10.2174/187152607780090748.
9
Cellular roles of DNA topoisomerases: a molecular perspective.
Nat Rev Mol Cell Biol. 2002 Jun;3(6):430-40. doi: 10.1038/nrm831.
10
DNA topoisomerases: harnessing and constraining energy to govern chromosome topology.
Q Rev Biophys. 2008 Feb;41(1):41-101. doi: 10.1017/S003358350800468X.

引用本文的文献

1
Unraveling the Role of Topoisomerase 3β (TOP3B) in mRNA Translation and Human Disease.
Wiley Interdiscip Rev RNA. 2025 Jul-Aug;16(4):e70020. doi: 10.1002/wrna.70020.
3
4
Regulation of DNA Topology in Archaea: State of the Art and Perspectives.
Mol Microbiol. 2025 Mar;123(3):245-264. doi: 10.1111/mmi.15328. Epub 2024 Dec 22.
5
Advances in research on malignant tumors and targeted agents for TOP2A (Review).
Mol Med Rep. 2025 Feb;31(2). doi: 10.3892/mmr.2024.13415. Epub 2024 Dec 13.
6
PARP1-driven repair of topoisomerase IIIα DNA-protein crosslinks by FEN1.
Cell Rep. 2024 Aug 27;43(8):114522. doi: 10.1016/j.celrep.2024.114522. Epub 2024 Jul 18.
7
Insights into the DNA and RNA Interactions of Human Topoisomerase III Beta Using Molecular Dynamics Simulations.
J Chem Inf Model. 2024 Aug 12;64(15):6062-6071. doi: 10.1021/acs.jcim.4c00472. Epub 2024 Jul 18.
9
Mechanisms and pathologies of human mitochondrial DNA replication and deletion formation.
Biochem J. 2024 Jun 5;481(11):683-715. doi: 10.1042/BCJ20230262.

本文引用的文献

1
Loss of TOP3B leads to increased R-loop formation and genome instability.
Open Biol. 2019 Dec;9(12):190222. doi: 10.1098/rsob.190222. Epub 2019 Dec 4.
2
Cell Cycle-Dependent Control and Roles of DNA Topoisomerase II.
Genes (Basel). 2019 Oct 30;10(11):859. doi: 10.3390/genes10110859.
3
Synergistic Coordination of Chromatin Torsional Mechanics and Topoisomerase Activity.
Cell. 2019 Oct 17;179(3):619-631.e15. doi: 10.1016/j.cell.2019.09.034.
4
R Loops: From Physiological to Pathological Roles.
Cell. 2019 Oct 17;179(3):604-618. doi: 10.1016/j.cell.2019.08.055. Epub 2019 Oct 10.
5
Topoisomerase II Is Crucial for Fork Convergence during Vertebrate Replication Termination.
Cell Rep. 2019 Oct 8;29(2):422-436.e5. doi: 10.1016/j.celrep.2019.08.097.
8
The FANCM-BLM-TOP3A-RMI complex suppresses alternative lengthening of telomeres (ALT).
Nat Commun. 2019 May 28;10(1):2252. doi: 10.1038/s41467-019-10180-6.
9
Transcription-mediated replication hindrance: a major driver of genome instability.
Genes Dev. 2019 Aug 1;33(15-16):1008-1026. doi: 10.1101/gad.324517.119. Epub 2019 May 23.
10
PICH and TOP3A cooperate to induce positive DNA supercoiling.
Nat Struct Mol Biol. 2019 Apr;26(4):267-274. doi: 10.1038/s41594-019-0201-6. Epub 2019 Apr 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验