Laboratory of Sensory Processing, Brain Mind Institute, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.
Curr Biol. 2011 Oct 11;21(19):1593-602. doi: 10.1016/j.cub.2011.08.028. Epub 2011 Sep 22.
Synaptic interactions between excitatory and inhibitory neocortical neurons are important for mammalian sensory perception. Synaptic transmission between identified neurons within neocortical microcircuits has mainly been studied in brain slice preparations in vitro. Here, we investigate brain-state-dependent neocortical synaptic interactions in vivo by combining the specificity of optogenetic stimulation with the precision of whole-cell recordings from postsynaptic excitatory glutamatergic neurons and GFP-labeled inhibitory GABAergic neurons targeted through two-photon microscopy.
Channelrhodopsin-2 (ChR2) stimulation of excitatory layer 2/3 barrel cortex neurons evoked larger and faster depolarizing postsynaptic potentials and more synaptically driven action potentials in fast-spiking (FS) GABAergic neurons compared to both non-fast-spiking (NFS) GABAergic neurons and postsynaptic excitatory pyramidal neurons located within the same neocortical microcircuit. The number of action potentials evoked in ChR2-expressing neurons showed low trial-to-trial variability, but postsynaptic responses varied strongly with near-linear dependence upon spontaneously driven changes in prestimulus membrane potential. Postsynaptic responses in excitatory neurons had reversal potentials, which were hyperpolarized relative to action potential threshold and were therefore inhibitory. Reversal potentials measured in postsynaptic GABAergic neurons were close to action potential threshold. Postsynaptic inhibitory neurons preferentially fired synaptically driven action potentials from spontaneously depolarized network states, with stronger state-dependent modulation in NFS GABAergic neurons compared to FS GABAergic neurons.
Inhibitory neurons appear to dominate neocortical microcircuit function, receiving stronger local excitatory synaptic input and firing more action potentials compared to excitatory neurons. In mouse layer 2/3 barrel cortex, we propose that strong state-dependent recruitment of inhibitory neurons drives competition among excitatory neurons enforcing sparse coding.
兴奋性和抑制性新皮质神经元之间的突触相互作用对于哺乳动物的感觉感知很重要。新皮质微电路中鉴定神经元之间的突触传递主要在体外脑片制备中进行了研究。在这里,我们通过将光遗传学刺激的特异性与从通过双光子显微镜靶向的突触后兴奋性谷氨酸能神经元和 GFP 标记的抑制性 GABA 能神经元进行全细胞记录的精度相结合,来研究体内与大脑状态相关的新皮质突触相互作用。
与非快速放电(NFS)GABA 能神经元和位于同一新皮质微电路中的突触后兴奋性锥体神经元相比,ChR2 刺激兴奋性 2/3 层桶状皮层神经元会在快速放电(FS)GABA 能神经元中引起更大和更快的去极化突触后电位和更多的突触驱动动作电位。ChR2 表达神经元中诱发的动作电位数量具有低试验间可变性,但突触后反应强烈地依赖于刺激前膜电位的自发驱动变化,具有近线性依赖性。兴奋性神经元中的突触后反应具有反转电位,相对于动作电位阈值超极化,因此具有抑制作用。在突触后 GABA 能神经元中测量的反转电位接近动作电位阈值。与 FS GABA 能神经元相比,NFS GABA 能神经元具有更强的状态依赖性调制,因此,突触后抑制性神经元优先从自发去极化的网络状态中发射突触驱动的动作电位。
在新皮质微电路功能中,抑制性神经元似乎占主导地位,与兴奋性神经元相比,它们接收更强的局部兴奋性突触输入并发射更多的动作电位。在小鼠 2/3 层桶状皮层中,我们提出强烈的状态依赖性抑制性神经元募集会驱动兴奋性神经元之间的竞争,从而强制稀疏编码。