Department of Biochemistry and Biophysics, Stockholm University, Sweden.
Arch Biochem Biophys. 2011 Dec 1;516(1):29-34. doi: 10.1016/j.abb.2011.09.003. Epub 2011 Sep 17.
Ribonucleotide reductase (RNR) is necessary for production of the precursor deoxyribonucleotides for DNA synthesis. Class Ia RNR functions via a stable free radical in one of the two components protein R2. The enzyme mechanism involves long range (proton coupled) electron transfer between protein R1 and the tyrosyl radical in protein R2. Earlier experimental studies showed that p-alkoxyphenols inhibit RNR. Here, molecular docking and molecular dynamics simulations involving protein R2 suggest an inhibition mechanism for p-alkoxyphenols . A low energy binding pocket is identified in protein R2. The preferred configuration provides a structural basis explaining their specific binding to the Escherichia coli and mouse R2 proteins. Trp48 (E. coli numbering), on the electron transfer pathway, is involved in the interactions with the inhibitors. The relative order of the binding energies calculated for the phenol derivatives to protein R2 is correlated with earlier experimental data on inhibition efficiency, in turn related to increasing size of the hydrophobic alkyl substituents. Using the configuration identified by molecular docking as a starting point for molecular dynamics simulations, we find that the p-allyloxyphenol interrupts the catalytic electron transfer pathway of the R2 protein by forming hydrogen bonds with Trp48 and Asp237, thus explaining the inhibitory activity of p-alkoxyphenols.
核酶(RNR)对于 DNA 合成前体脱氧核苷酸的产生是必需的。Ia 类 RNR 通过两种成分蛋白 R2 中的一种稳定的自由基发挥作用。该酶机制涉及蛋白 R1 和蛋白 R2 中的酪氨酸自由基之间的长程(质子偶联)电子转移。早期的实验研究表明,对烷氧基苯酚抑制 RNR。在这里,涉及蛋白 R2 的分子对接和分子动力学模拟表明了对烷氧基苯酚的抑制机制。在蛋白 R2 中鉴定出一个低能量结合口袋。首选构象提供了一个结构基础,解释了它们与大肠杆菌和小鼠 R2 蛋白的特异性结合。电子转移途径上的色氨酸 48(大肠杆菌编号)参与与抑制剂的相互作用。计算得到的酚衍生物与蛋白 R2 结合能的相对顺序与早期的抑制效率实验数据相关,而抑制效率又与疏水性烷基取代基的增大有关。使用分子对接确定的构象作为分子动力学模拟的起点,我们发现对丙烯氧基苯酚通过与色氨酸 48 和天冬氨酸 237 形成氢键来中断 R2 蛋白的催化电子转移途径,从而解释了对烷氧基苯酚的抑制活性。