Akimov Vyacheslav, Rigbolt Kristoffer T G, Nielsen Mogens M, Blagoev Blagoy
Center for Experimental BioInformatics, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark.
Mol Biosyst. 2011 Dec;7(12):3223-33. doi: 10.1039/c1mb05185g. Epub 2011 Sep 28.
Protein ubiquitination is a dynamic reversible post-translational modification that plays a key role in the regulation of numerous cellular processes including signal transduction, endocytosis, cell cycle control, DNA repair and gene transcription. The conjugation of the small protein ubiquitin or chains of ubiquitin molecules of various types and lengths to targeted proteins is known to alter proteins' lifespan, localization and function and to modulate protein interactions. Despite its central importance in various aspects of cellular life and function there are only a limited number of reports investigating ubiquitination on a proteomic scale, mainly due to the inherited complexity and heterogeneity of ubiquitination. We describe here a quantitative proteomics strategy based on the specificity of ubiquitin binding domains (UBDs) and Stable Isotope Labeling by Amino acids in Cell culture (SILAC) for selectively decoding ubiquitination-driven processes involved in the regulation of cellular signaling networks. We applied this approach to characterize the temporal dynamics of ubiquitination events accompanying epidermal growth factor receptor (EGFR) signal transduction. We used recombinant UBDs derived from endocytic adaptor proteins for specific enrichment of ubiquitinated complexes from the EGFR network and subsequent quantitative analyses by high accuracy mass spectrometry. We show that the strategy is suitable for profiling the dynamics of ubiquitination occurring on individual proteins as well as ubiquitination-dependent events in signaling pathways. In addition to a detailed seven time-point profile of EGFR ubiquitination over 30 minutes of ligand stimulation, our data determined prominent involvement of Lysine-63 ubiquitin branching in EGF signaling. Furthermore, we found two centrosomal proteins, PCM1 and Azi1, to form a multi-protein complex with the ubiquitin E3 ligases MIB1 and WWP2 downstream of the EGFR, thereby revealing possible ubiquitination cross-talk between EGF signaling and centrosomal-dependent rearrangements of the microtubules. This is a general strategy that can be utilized to study the dynamics of other cellular systems and post-translational modifications.
蛋白质泛素化是一种动态可逆的翻译后修饰,在众多细胞过程的调控中发挥关键作用,这些过程包括信号转导、内吞作用、细胞周期控制、DNA修复和基因转录。已知将小蛋白泛素或各种类型和长度的泛素分子链与靶向蛋白结合,会改变蛋白质的寿命、定位和功能,并调节蛋白质相互作用。尽管泛素化在细胞生命和功能的各个方面都至关重要,但仅有有限数量的报告在蛋白质组学规模上研究泛素化,这主要是由于泛素化固有的复杂性和异质性。我们在此描述一种基于泛素结合结构域(UBD)的特异性和细胞培养中氨基酸稳定同位素标记(SILAC)的定量蛋白质组学策略,用于选择性解码参与细胞信号网络调控的泛素化驱动过程。我们应用此方法来表征伴随表皮生长因子受体(EGFR)信号转导的泛素化事件的时间动态。我们使用源自内吞衔接蛋白的重组UBD,从EGFR网络中特异性富集泛素化复合物,随后通过高精度质谱进行定量分析。我们表明该策略适用于分析单个蛋白质上发生的泛素化动态以及信号通路中依赖泛素化的事件。除了在30分钟配体刺激过程中对EGFR泛素化进行详细的七个时间点分析外,我们的数据确定了赖氨酸-63泛素分支在EGF信号传导中的显著参与。此外,我们发现两种中心体蛋白PCM1和Azi1,在EGFR下游与泛素E3连接酶MIB1和WWP2形成多蛋白复合物,从而揭示了EGF信号传导与微管中心体依赖性重排之间可能的泛素化相互作用。这是一种可用于研究其他细胞系统动态和翻译后修饰的通用策略。