DBT-Bioinformatics Infrastructure Facility, Department of Biochemistry, Sri Krishnadevaraya University, Anantapur, 515055, India.
Interdiscip Sci. 2011 Sep;3(3):204-16. doi: 10.1007/s12539-011-0100-y. Epub 2011 Sep 29.
Tuberculosis (TB) remains the most frequent and important infectious disease causing morbidity and death in the world. One third of the world's population is infected with Mycobacterium tuberculosis (Mtb), the etiologic agent of TB. The bacterial enzyme MurA catalyzes the transfer of enolpyruvate from phosphoenolpyruvate (PEP) to uridine diphospho-N-acetylglucosamine (UNAG), which is the first committed step of bacterial cell wall biosynthesis. In this work, 3D structure model of Mtb-MurA enzyme has been developed for the first time by homology modeling and molecular dynamics simulation techniques. Multiple sequence alignment and 3D structure model provided the putative substrate binding pocket of Mtb-MurA with respect to E. coli MurA. This analysis was helpful in identifying the binding sites and molecular function of the MurA homologue. Molecular docking study was performed on this 3D structure model, using different classes of inhibitors like fosfomycin, cyclic disulfide analog RWJ-3981, pyrazolopyrimidine analog RWJ-110192, purine analog RWJ-140998, 5-sulfonoxy-anthranilic acid derivatives T6361, T6362 and the results showed that the 5-sulfonoxyanthranilic acid derivatives showed the best interaction compared to other inhibitors. We also designed new efficient analogs of T6361 and T6362 which showed even better interaction with Mtb-MurA than the parental 5-sulfonoxy-anthranilic acid derivatives. Further the comparative molecular electrostatic potential and cavity depth analysis of Mtb-MurA suggested several important differences in its substrate and inhibitor binding pocket. Such differences could be exploited in the future for designing a more specific inhibitor for Mtb-MurA enzyme.
结核病(TB)仍然是世界上发病率和死亡率最高的最常见的重要传染病。世界上三分之一的人口感染了结核分枝杆菌(Mtb),这是结核病的病原体。细菌酶 MurA 催化烯醇丙酮酸从磷酸烯醇丙酮酸(PEP)转移到尿苷二磷酸-N-乙酰葡萄糖胺(UNAG),这是细菌细胞壁生物合成的第一步。在这项工作中,首次通过同源建模和分子动力学模拟技术开发了 Mtb-MurA 酶的 3D 结构模型。多重序列比对和 3D 结构模型提供了 Mtb-MurA 相对于大肠杆菌 MurA 的假定底物结合口袋。这种分析有助于确定 MurA 同源物的结合位点和分子功能。对该 3D 结构模型进行了分子对接研究,使用了不同类别的抑制剂,如磷霉素、环状二硫代类似物 RWJ-3981、吡唑并嘧啶类似物 RWJ-110192、嘌呤类似物 RWJ-140998、5-磺氧基-邻氨基苯甲酸衍生物 T6361、T6362,结果表明 5-磺氧基-邻氨基苯甲酸衍生物与其他抑制剂相比表现出最好的相互作用。我们还设计了 T6361 和 T6362 的新有效类似物,它们与 Mtb-MurA 的相互作用甚至比母体 5-磺氧基-邻氨基苯甲酸衍生物更好。进一步的 Mtb-MurA 比较分子静电势和腔深分析表明,其底物和抑制剂结合口袋存在几个重要差异。这些差异可以在未来用于设计针对 Mtb-MurA 酶的更特异的抑制剂。