Department of Physics, Lehigh University, Bethlehem, Pennsylvania, USA.
Biophys J. 2011 Oct 5;101(7):1794-804. doi: 10.1016/j.bpj.2011.09.007.
Analysis of particle trajectories in images obtained by fluorescence microscopy reveals biophysical properties such as diffusion coefficient or rates of association and dissociation. Particle tracking and lifetime measurement is often limited by noise, large mobilities, image inhomogeneities, and path crossings. We present Speckle TrackerJ, a tool that addresses some of these challenges using computer-assisted techniques for finding positions and tracking particles in different situations. A dynamic user interface assists in the creation, editing, and refining of particle tracks. The following are results from application of this program: 1), Tracking single molecule diffusion in simulated images. The shape of the diffusing marker on the image changes from speckle to cloud, depending on the relationship of the diffusion coefficient to the camera exposure time. We use these images to illustrate the range of diffusion coefficients that can be measured. 2), We used the program to measure the diffusion coefficient of capping proteins in the lamellipodium. We found values ∼0.5 μm(2)/s, suggesting capping protein association with protein complexes or the membrane. 3), We demonstrate efficient measuring of appearance and disappearance of EGFP-actin speckles within the lamellipodium of motile cells that indicate actin monomer incorporation into the actin filament network. 4), We marked appearance and disappearance events of fluorescently labeled vesicles to supported lipid bilayers and tracked single lipids from the fused vesicle on the bilayer. This is the first time, to our knowledge, that vesicle fusion has been detected with single molecule sensitivity and the program allowed us to perform a quantitative analysis. 5), By discriminating between undocking and fusion events, dwell times for vesicle fusion after vesicle docking to membranes can be measured.
通过荧光显微镜获得的图像中的粒子轨迹分析可以揭示扩散系数或缔合和解离速率等生物物理性质。粒子追踪和寿命测量通常受到噪声、大迁移率、图像非均匀性和轨迹交叉的限制。我们提出了 Speckle TrackerJ,这是一种使用计算机辅助技术来寻找不同情况下的位置和跟踪粒子的工具,可以解决其中一些挑战。动态用户界面有助于创建、编辑和细化粒子轨迹。以下是该程序的应用结果:1)在模拟图像中追踪单个分子扩散。由于扩散标记的形状在图像中从斑点变为云状,这取决于扩散系数与相机曝光时间的关系。我们使用这些图像来说明可以测量的扩散系数范围。2)我们使用该程序测量了片状伪足中的盖帽蛋白的扩散系数。我们发现约 0.5μm(2)/s 的值,表明盖帽蛋白与蛋白复合物或膜结合。3)我们证明了在运动细胞的片状伪足内高效测量 EGFP-肌动蛋白斑点的出现和消失,这表明肌动蛋白单体掺入肌动蛋白丝网络。4)我们标记荧光标记的囊泡在支撑脂质双层上的出现和消失事件,并从双层上融合的囊泡跟踪单个脂质。据我们所知,这是第一次使用单分子灵敏度检测囊泡融合,并且该程序允许我们进行定量分析。5)通过区分停泊和融合事件,可以测量囊泡停泊到膜上后融合的停留时间。