Department of Pharmacology, Kyoto University Faculty of Medicine, Yoshida Konoe-cho, Sakyo-ku, Kyoto, Japan.
Proc Jpn Acad Ser B Phys Biol Sci. 2010;86(1):62-83. doi: 10.2183/pjab.86.62.
The actin cytoskeleton drives cell locomotion and tissue remodeling. The invention of live-cell fluorescence single-molecule imaging opened a window for direct viewing of the actin remodeling processes in the cell. Since then, a number of unanticipated molecular functions have been revealed. One is the mechanism of F-actin network breakdown. In lamellipodia, one third of newly polymerized F-actin disassembles within 10 seconds. This fast F-actin turnover is facilitated by the filament severing/disrupting activity involving cofilin and AIP1. Astoundingly fast dissociation kinetics of the barbed end interactors including capping protein suggests that F-actin turnover might proceed through repetitive disruption/reassembly of the filament near the barbed end. The picture of actin polymerization is also being revealed. At the leading edge of the cell, Arp2/3 complex is highly activated in a narrow edge region. In contrast, mDia1 and its related Formin homology proteins display a long-distance directional molecular movement using their processive actin capping ability. Recently, these two independently-developed projects converged into a discovery of the spatiotemporal coupling between mDia1-mediated filament nucleation and actin disassembly. Presumably, the local concentration fluctuation of G-actin regulates the actin nucleation efficiency of specific actin nucleators including mDia1. Pharmacological perturbation and quantitative molecular behavior analysis synergize to reveal hidden molecular linkages in the actin turnover cycle and cell signaling.
肌动蛋白细胞骨架驱动细胞运动和组织重塑。活细胞荧光单分子成像的发明为直接观察细胞中肌动蛋白重塑过程打开了一扇窗户。从那时起,许多意想不到的分子功能被揭示出来。其中之一是 F-肌动蛋白网络解体的机制。在片状伪足中,三分之一的新聚合的 F-肌动蛋白在 10 秒内解体。这种快速的 F-肌动蛋白周转率是由涉及 cofilin 和 AIP1 的丝状切断/破坏活性促进的。令人惊讶的是,包括加帽蛋白在内的丝氨酸端相互作用物的快速解离动力学表明,F-肌动蛋白周转率可能通过丝氨酸端附近的丝状重复破坏/组装进行。肌动蛋白聚合的图片也在被揭示。在细胞的前缘,Arp2/3 复合物在一个狭窄的边缘区域高度激活。相比之下,mDia1 及其相关的formin 同源蛋白利用其连续的肌动蛋白加帽能力进行远距离定向分子运动。最近,这两个独立开发的项目汇聚成一个关于 mDia1 介导的丝核形成和肌动蛋白解体之间时空偶联的发现。据推测,G-肌动蛋白的局部浓度波动调节包括 mDia1 在内的特定肌动蛋白核酶的肌动蛋白核酶效率。药理学干扰和定量分子行为分析协同揭示了肌动蛋白周转率和细胞信号转导中隐藏的分子联系。