Wellcome Trust/Cancer Research UK Gurdon Institute, Cambridge, CB2 1QN, UK.
BMC Genomics. 2011 Sep 30;12:476. doi: 10.1186/1471-2164-12-476.
The transcription factor MYC is a critical regulator of diverse cellular processes, including both replication and apoptosis. Differences in MYC-regulated gene expression responsible for such opposing outcomes in vivo remain obscure. To address this we have examined time-dependent changes in global gene expression in two transgenic mouse models in which MYC activation, in either skin suprabasal keratinocytes or pancreatic islet β-cells, promotes tissue expansion or involution, respectively.
Consistent with observed phenotypes, expression of cell cycle genes is increased in both models (albeit enriched in β-cells), as are those involved in cell growth and metabolism, while expression of genes involved in cell differentiation is down-regulated. However, in β-cells, which unlike suprabasal keratinocytes undergo prominent apoptosis from 24 hours, there is up-regulation of genes associated with DNA-damage response and intrinsic apoptotic pathways, including Atr, Arf, Bax and Cycs. In striking contrast, this is not the case for suprabasal keratinocytes, where pro-apoptotic genes such as Noxa are down-regulated and key anti-apoptotic pathways (such as Igf1-Akt) and those promoting angiogenesis are up-regulated. Moreover, dramatic up-regulation of steroid hormone-regulated Kallikrein serine protease family members in suprabasal keratinocytes alone could further enhance local Igf1 actions, such as through proteolysis of Igf1 binding proteins.
Activation of MYC causes cell growth, loss of differentiation and cell cycle entry in both β-cells and suprabasal keratinocytes in vivo. Apoptosis, which is confined to β-cells, may involve a combination of a DNA-damage response and downstream activation of pro-apoptotic signalling pathways, including Cdc2a and p19(Arf)/p53, and downstream targets. Conversely, avoidance of apoptosis in suprabasal keratinocytes may result primarily from the activation of key anti-apoptotic signalling pathways, particularly Igf1-Akt, and induction of an angiogenic response, though intrinsic resistance to induction of p19(Arf) by MYC in suprabasal keratinocytes may contribute.
转录因子 MYC 是多种细胞过程的关键调节因子,包括复制和凋亡。导致体内相反结果的 MYC 调节基因表达的差异仍不清楚。为了解决这个问题,我们检查了两种转基因小鼠模型中全局基因表达的时间依赖性变化,其中 MYC 在皮肤上皮角质细胞或胰腺胰岛β细胞中的激活分别促进组织扩张或萎缩。
与观察到的表型一致,两种模型中的细胞周期基因表达增加(尽管在β细胞中富集),以及参与细胞生长和代谢的基因表达增加,而参与细胞分化的基因表达下调。然而,在β细胞中,与上皮角质细胞不同,β细胞从 24 小时开始经历明显的凋亡,与 DNA 损伤反应和内在凋亡途径相关的基因上调,包括 Atr、Arf、Bax 和 Cycs。与此形成鲜明对比的是,上皮角质细胞并非如此,其中促凋亡基因如 Noxa 下调,而关键的抗凋亡途径(如 Igf1-Akt)和促进血管生成的途径上调。此外,在上皮角质细胞中,类固醇激素调节的 Kallikrein 丝氨酸蛋白酶家族成员的显著上调可能进一步增强局部 Igf1 的作用,例如通过 Igf1 结合蛋白的蛋白水解。
MYC 的激活导致体内β细胞和上皮角质细胞中的细胞生长、分化丧失和细胞周期进入。凋亡仅限于β细胞,可能涉及 DNA 损伤反应和下游促凋亡信号通路的激活,包括 Cdc2a 和 p19(Arf)/p53,以及下游靶标。相反,上皮角质细胞避免凋亡可能主要归因于关键抗凋亡信号通路的激活,特别是 Igf1-Akt,以及诱导血管生成反应,尽管 MYC 在上皮角质细胞中诱导 p19(Arf)的内在抗性可能有助于。