Suppr超能文献

微小隐孢子虫激酶组。

The Cryptosporidium parvum kinome.

机构信息

Structural Genomics Consortium, University of Toronto, MaRS South Tower, Floor 7, 101 College St, Toronto, Ontario M5G 1L7, Canada.

出版信息

BMC Genomics. 2011 Sep 30;12:478. doi: 10.1186/1471-2164-12-478.

Abstract

BACKGROUND

Hundreds of millions of people are infected with cryptosporidiosis annually, with immunocompromised individuals suffering debilitating symptoms and children in socioeconomically challenged regions at risk of repeated infections. There is currently no effective drug available. In order to facilitate the pursuit of anti-cryptosporidiosis targets and compounds, our study spans the classification of the Cryptosporidium parvum kinome and the structural and biochemical characterization of representatives from the CDPK family and a MAP kinase.

RESULTS

The C. parvum kinome comprises over 70 members, some of which may be promising drug targets. These C. parvum protein kinases include members in the AGC, Atypical, CaMK, CK1, CMGC, and TKL groups; however, almost 35% could only be classified as OPK (other protein kinases). In addition, about 25% of the kinases identified did not have any known orthologues outside of Cryptosporidium spp. Comparison of specific kinases with their Plasmodium falciparum and Toxoplasma gondii orthologues revealed some distinct characteristics within the C. parvum kinome, including potential targets and opportunities for drug design. Structural and biochemical analysis of 4 representatives of the CaMK group and a MAP kinase confirms features that may be exploited in inhibitor design. Indeed, screening CpCDPK1 against a library of kinase inhibitors yielded a set of the pyrazolopyrimidine derivatives (PP1-derivatives) with IC₅₀ values of < 10 nM. The binding of a PP1-derivative is further described by an inhibitor-bound crystal structure of CpCDPK1. In addition, structural analysis of CpCDPK4 identified an unprecedented Zn-finger within the CDPK kinase domain that may have implications for its regulation.

CONCLUSIONS

Identification and comparison of the C. parvum protein kinases against other parasitic kinases shows how orthologue- and family-based research can be used to facilitate characterization of promising drug targets and the search for new drugs.

摘要

背景

每年有数亿人感染隐孢子虫病,免疫功能低下的人会出现衰弱症状,而社会经济困难地区的儿童则有反复感染的风险。目前尚无有效的药物。为了便于寻找抗隐孢子虫病的靶点和化合物,我们的研究涵盖了隐孢子虫小隐孢子虫激酶组的分类,以及 CDPK 家族和 MAP 激酶代表的结构和生化特征。

结果

隐孢子虫小隐孢子虫激酶组包含 70 多个成员,其中一些可能是有前途的药物靶点。这些隐孢子虫蛋白激酶包括 AGC、非典型、CaMK、CK1、CMGC 和 TKL 组的成员;然而,几乎 35%的激酶只能归类为 OPK(其他蛋白激酶)。此外,鉴定出的激酶中约有 25%在隐孢子虫属以外的物种中没有任何已知的同源物。与疟原虫和刚地弓形虫的特定激酶进行比较,揭示了隐孢子虫小隐孢子虫激酶组中的一些独特特征,包括潜在的靶点和药物设计机会。对 CaMK 组的 4 个代表和一个 MAP 激酶进行结构和生化分析,证实了可能在抑制剂设计中利用的特征。事实上,针对激酶抑制剂文库对 CpCDPK1 进行筛选,得到了一组吡唑并嘧啶衍生物(PP1 衍生物),其 IC₅₀ 值<10 nM。通过抑制剂结合的 CpCDPK1 晶体结构进一步描述了 PP1 衍生物的结合。此外,CpCDPK4 的结构分析确定了 CDPK 激酶结构域内一个前所未有的锌指结构,这可能对其调控有影响。

结论

将隐孢子虫蛋白激酶与其他寄生虫激酶进行鉴定和比较,展示了基于同源物和家族的研究如何用于促进有前途的药物靶点的表征和新药的寻找。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/068f/3227725/bb0233f83ce1/1471-2164-12-478-1.jpg

相似文献

1
The Cryptosporidium parvum kinome.
BMC Genomics. 2011 Sep 30;12:478. doi: 10.1186/1471-2164-12-478.
2
CDPKs of Cryptosporidium parvum--stage-specific expression in vitro.
Parasitol Res. 2014 Jul;113(7):2525-33. doi: 10.1007/s00436-014-3902-0. Epub 2014 May 9.
3
TKL family kinases in human apicomplexan pathogens.
Mol Biochem Parasitol. 2024 Sep;259:111628. doi: 10.1016/j.molbiopara.2024.111628. Epub 2024 May 6.
4
Benzoylbenzimidazole-based selective inhibitors targeting Cryptosporidium parvum and Toxoplasma gondii calcium-dependent protein kinase-1.
Bioorg Med Chem Lett. 2012 Aug 15;22(16):5264-7. doi: 10.1016/j.bmcl.2012.06.050. Epub 2012 Jun 23.
5
Tyrosine Kinase Inhibitors Display Potent Activity against Cryptosporidium parvum.
Microbiol Spectr. 2023 Feb 14;11(1):e0387422. doi: 10.1128/spectrum.03874-22. Epub 2022 Dec 19.
7
Identification of Cryptosporidium parvum dihydrofolate reductase inhibitors by complementation in Saccharomyces cerevisiae.
Antimicrob Agents Chemother. 2000 Apr;44(4):1019-28. doi: 10.1128/AAC.44.4.1019-1028.2000.
8
Biochemical characterization of FIKK8--A unique protein kinase from the malaria parasite Plasmodium falciparum and other apicomplexans.
Mol Biochem Parasitol. 2015 Jun;201(2):85-9. doi: 10.1016/j.molbiopara.2015.06.002. Epub 2015 Jun 22.
9
5-Aminopyrazole-4-Carboxamide-Based Compounds Prevent the Growth of Cryptosporidium parvum.
Antimicrob Agents Chemother. 2017 Jul 25;61(8). doi: 10.1128/AAC.00020-17. Print 2017 Aug.

引用本文的文献

1
Versatile Imidazole Scaffold with Potent Activity against Multiple Apicomplexan Parasites.
ACS Infect Dis. 2025 Jun 13;11(6):1497-1507. doi: 10.1021/acsinfecdis.5c00049. Epub 2025 May 8.
2
Pyridopyrimidinones as a new chemotype of calcium dependent protein kinase 1 (CDPK1) inhibitors for Cryptosporidium.
Mol Biochem Parasitol. 2024 Dec;260:111637. doi: 10.1016/j.molbiopara.2024.111637. Epub 2024 Jun 18.
3
TKL family kinases in human apicomplexan pathogens.
Mol Biochem Parasitol. 2024 Sep;259:111628. doi: 10.1016/j.molbiopara.2024.111628. Epub 2024 May 6.
4
Tyrosine Kinase Inhibitors Display Potent Activity against Cryptosporidium parvum.
Microbiol Spectr. 2023 Feb 14;11(1):e0387422. doi: 10.1128/spectrum.03874-22. Epub 2022 Dec 19.
6
Characterization of Three Calcium-Dependent Protein Kinases of .
Front Microbiol. 2021 Jan 12;11:622203. doi: 10.3389/fmicb.2020.622203. eCollection 2020.
7
Characterization of Calcium-Dependent Protein Kinases 3, a Protein Involved in Growth of .
Front Microbiol. 2020 May 8;11:907. doi: 10.3389/fmicb.2020.00907. eCollection 2020.
8
LF4/MOK and a CDK-related kinase regulate the number and length of cilia in Tetrahymena.
PLoS Genet. 2019 Jul 24;15(7):e1008099. doi: 10.1371/journal.pgen.1008099. eCollection 2019 Jul.
9
Small Molecules Targeting the Inactive Form of the Mnk1/2 Kinases.
ACS Omega. 2017 Nov 30;2(11):7881-7891. doi: 10.1021/acsomega.7b01403. Epub 2017 Nov 14.
10
Revisiting the global problem of cryptosporidiosis and recommendations.
Trop Parasitol. 2017 Jan-Jun;7(1):8-17. doi: 10.4103/2229-5070.202290.

本文引用的文献

1
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.
2
Too many roads not taken.
Nature. 2011 Feb 10;470(7333):163-5. doi: 10.1038/470163a.
3
Structures of parasitic CDPK domains point to a common mechanism of activation.
Proteins. 2011 Mar;79(3):803-20. doi: 10.1002/prot.22919. Epub 2010 Dec 3.
5
Integrative genomic approaches highlight a family of parasite-specific kinases that regulate host responses.
Cell Host Microbe. 2010 Aug 19;8(2):208-18. doi: 10.1016/j.chom.2010.07.004.
6
Global distribution, public health and clinical impact of the protozoan pathogen cryptosporidium.
Interdiscip Perspect Infect Dis. 2010;2010. doi: 10.1155/2010/753512. Epub 2010 Jul 14.
7
Treatment of cryptosporidiosis: do we know what we think we know?
Curr Opin Infect Dis. 2010 Oct;23(5):494-9. doi: 10.1097/QCO.0b013e32833de052.
8
Activity of substituted thiophene sulfonamides against malarial and mammalian cyclin dependent protein kinases.
Bioorg Med Chem Lett. 2010 Jul 1;20(13):3863-7. doi: 10.1016/j.bmcl.2010.05.039. Epub 2010 May 21.
9
SAM domain-dependent activity of PfTKL3, an essential tyrosine kinase-like kinase of the human malaria parasite Plasmodium falciparum.
Cell Mol Life Sci. 2010 Oct;67(19):3355-69. doi: 10.1007/s00018-010-0434-3. Epub 2010 Jun 27.
10
A plant-like kinase in Plasmodium falciparum regulates parasite egress from erythrocytes.
Science. 2010 May 14;328(5980):910-2. doi: 10.1126/science.1188191.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验