Suppr超能文献

GTP 环化水解酶 I 缺陷型 hph-1 小鼠中内皮型一氧化氮合酶解偶联对大、小动脉的差异作用。

Differential effects of eNOS uncoupling on conduit and small arteries in GTP-cyclohydrolase I-deficient hph-1 mice.

机构信息

Department of Anesthesiology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA.

出版信息

Am J Physiol Heart Circ Physiol. 2011 Dec;301(6):H2227-34. doi: 10.1152/ajpheart.00588.2011. Epub 2011 Sep 30.

Abstract

In the present study, we used the hph-1 mouse, which displays GTP-cyclohydrolase I (GTPCH I) deficiency, to test the hypothesis that loss of tetrahydrobiopterin (BH(4)) in conduit and small arteries activates compensatory mechanisms designed to protect vascular wall from oxidative stress induced by uncoupling of endothelial nitric oxide synthase (eNOS). Both GTPCH I activity and BH(4) levels were reduced in the aortas and small mesenteric arteries of hph-1 mice. However, the BH(4)-to-7,8-dihydrobiopterin ratio was significantly reduced only in hph-1 aortas. Furthermore, superoxide anion and 3-nitrotyrosine production were significantly enhanced in aortas but not in small mesenteric arteries of hph-1 mice. In contrast to the aorta, protein expression of copper- and zinc-containing superoxide dismutase (CuZnSOD) was significantly increased in small mesenteric arteries of hph-1 mice. Protein expression of catalase was increased in both aortas and small mesenteric arteries of hph-1 mice. Further analysis of endothelial nitric oxide synthase (eNOS)/cyclic guanosine monophosphate (cGMP) signaling demonstrated that protein expression of phosphorylated Ser(1177)-eNOS as well as basal cGMP levels and hydrogen peroxide was increased in hph-1 aortas. Increased production of hydrogen peroxide in hph-1 mice aortas appears to be the most likely mechanism responsible for phosphorylation of eNOS and elevation of cGMP. In contrast, upregulation of CuZnSOD and catalase in resistance arteries is sufficient to protect vascular tissue from increased production of reactive oxygen species generated by uncoupling of eNOS. The results of our study suggest that anatomical origin determines the ability of vessel wall to cope with oxidative stress induced by uncoupling of eNOS.

摘要

在本研究中,我们使用了 hph-1 小鼠,该小鼠表现出 GTP-环水解酶 I(GTPCH I)缺乏,以测试以下假设:在导管和小动脉中四氢生物蝶呤(BH(4))的丧失激活了代偿机制,旨在保护血管壁免受内皮型一氧化氮合酶(eNOS)解偶联引起的氧化应激。hph-1 小鼠的主动脉和小肠系膜动脉中的 GTPCH I 活性和 BH(4)水平均降低。然而,仅在 hph-1 主动脉中 BH(4)与 7,8-二氢生物蝶呤的比值显著降低。此外,超氧阴离子和 3-硝基酪氨酸的产生在 hph-1 小鼠的主动脉中显著增强,但在小肠系膜动脉中则没有。与主动脉相反,铜锌超氧化物歧化酶(CuZnSOD)的蛋白表达在 hph-1 小鼠的小肠系膜动脉中显著增加。hph-1 小鼠的主动脉和小肠系膜动脉中过氧化氢酶的蛋白表达均增加。进一步分析内皮型一氧化氮合酶(eNOS)/环鸟苷酸(cGMP)信号转导表明,磷酸化 Ser(1177)-eNOS 以及基础 cGMP 水平和过氧化氢的蛋白表达在 hph-1 主动脉中增加。hph-1 小鼠主动脉中过氧化氢的产生增加似乎是 eNOS 解偶联导致 eNOS 磷酸化和 cGMP 升高的最可能机制。相反,阻力动脉中 CuZnSOD 和过氧化氢酶的上调足以保护血管组织免受 eNOS 解偶联产生的活性氧的增加。我们的研究结果表明,血管壁应对 eNOS 解偶联引起的氧化应激的能力取决于血管壁的解剖起源。

相似文献

7
eNOS uncoupling and endothelial dysfunction in aged vessels.衰老血管中的内皮型一氧化氮合酶解偶联与内皮功能障碍
Am J Physiol Heart Circ Physiol. 2009 Nov;297(5):H1829-36. doi: 10.1152/ajpheart.00230.2009. Epub 2009 Sep 18.

引用本文的文献

2
Vascular phenotype of amyloid precursor protein-deficient mice.淀粉样前体蛋白缺陷小鼠的血管表型
Am J Physiol Heart Circ Physiol. 2019 Jun 1;316(6):H1297-H1308. doi: 10.1152/ajpheart.00539.2018. Epub 2019 Mar 22.
9
Hemoglobin α in the blood vessel wall.血管壁中的血红蛋白α
Free Radic Biol Med. 2014 Aug;73:136-42. doi: 10.1016/j.freeradbiomed.2014.04.019. Epub 2014 May 14.

本文引用的文献

1
Targeting endothelial and myocardial dysfunction with tetrahydrobiopterin.四氢生物蝶呤靶向内皮和心肌功能障碍。
J Mol Cell Cardiol. 2011 Oct;51(4):559-63. doi: 10.1016/j.yjmcc.2011.03.009. Epub 2011 Mar 31.
4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验