Suppr超能文献

是什么使得可转座元件在果蝇基因组中移动?

What makes transposable elements move in the Drosophila genome?

机构信息

Grup de Biologia Evolutiva, Departament de Genètica i Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain.

出版信息

Heredity (Edinb). 2012 May;108(5):461-8. doi: 10.1038/hdy.2011.89. Epub 2011 Oct 5.

Abstract

Transposable elements (TEs), by their capacity of moving and inducing mutations in the genome, are considered important drivers of species evolution. The successful invasions of TEs in genomes, despite their mutational properties, are an apparent paradox. TEs' transposition is usually strongly regulated to low value, but in some cases these elements can also show high transposition rates, which has been associated sometimes to changes in environmental conditions. It is evident that factors susceptible to induce transpositions in natural populations contribute to TE perpetuation. Different factors were proposed as causative agents of TE mobilization in a wide range of organisms: biotic and abiotic stresses, inter- and intraspecific crosses and populational factors. However, there is no clear evidence of the factors capable of inducing TE mobilization in Drosophila, and data on laboratory stocks show contradictory results. The aim of this review is to have an update critical revision about mechanisms promoting transposition of TEs in Drosophila, and to provide to the readers a global vision of the dynamics of these genomic elements in the Drosophila genome.

摘要

转座元件 (TEs) 能够在基因组中移动和诱导突变,被认为是物种进化的重要驱动因素。尽管 TEs 具有突变特性,但它们在基因组中的成功入侵是一个明显的悖论。TEs 的转座通常受到强烈的调控,使其处于低水平,但在某些情况下,这些元件也可以表现出高转座率,这与环境条件的变化有关。显然,能够在自然种群中诱导转座的因素有助于 TE 的持续存在。在广泛的生物体中,不同的因素被提出作为 TE 动员的原因:生物和非生物胁迫、种间和种内杂交以及种群因素。然而,目前还没有明确的证据表明有哪些因素能够诱导 Drosophila 中的 TE 动员,而且实验室种群的数据显示出相互矛盾的结果。本综述的目的是对促进 Drosophila 中 TE 转座的机制进行批判性的更新,为读者提供这些基因组元件在 Drosophila 基因组中的动态的整体视角。

相似文献

1
What makes transposable elements move in the Drosophila genome?
Heredity (Edinb). 2012 May;108(5):461-8. doi: 10.1038/hdy.2011.89. Epub 2011 Oct 5.
2
Transposable elements in natural populations of Drosophila melanogaster.
Philos Trans R Soc Lond B Biol Sci. 2010 Apr 27;365(1544):1219-28. doi: 10.1098/rstb.2009.0318.
5
Genome-Wide Estimates of Transposable Element Insertion and Deletion Rates in Drosophila Melanogaster.
Genome Biol Evol. 2017 May 1;9(5):1329-1340. doi: 10.1093/gbe/evx050.
6
Experimental evolution reveals hyperparasitic interactions among transposable elements.
Proc Natl Acad Sci U S A. 2016 Dec 20;113(51):14763-14768. doi: 10.1073/pnas.1524143113. Epub 2016 Dec 5.
8
Transposable element dynamics in two sibling species: Drosophila melanogaster and Drosophila simulans.
Genetica. 2004 Mar;120(1-3):115-23. doi: 10.1023/b:gene.0000017635.34955.b5.
9
Comparative analysis of transposable elements in the melanogaster subgroup sequenced genomes.
Gene. 2011 Mar 1;473(2):100-9. doi: 10.1016/j.gene.2010.11.009. Epub 2010 Dec 14.
10
The Transposable Elements of the Drosophila serrata Reference Panel.
Genome Biol Evol. 2021 Sep 1;13(9). doi: 10.1093/gbe/evab100.

引用本文的文献

1
Identification of Retrocopies in Lepidoptera and Impact on Domestication of Silkworm.
Genes (Basel). 2024 Dec 21;15(12):1641. doi: 10.3390/genes15121641.
3
Stress Induced Activation of LTR Retrotransposons in the Genome.
Life (Basel). 2023 Nov 28;13(12):2272. doi: 10.3390/life13122272.
4
Variation in mutation, recombination, and transposition rates in and .
Genome Res. 2023 Apr;33(4):587-598. doi: 10.1101/gr.277383.122. Epub 2023 Apr 10.
5
Genome-wide analysis of heat stress-stimulated transposon mobility in the human fungal pathogen .
Proc Natl Acad Sci U S A. 2023 Jan 24;120(4):e2209831120. doi: 10.1073/pnas.2209831120. Epub 2023 Jan 20.
9
High Stability of the Epigenome in Drosophila Interspecific Hybrids.
Genome Biol Evol. 2022 Feb 4;14(2). doi: 10.1093/gbe/evac024.
10
Controlling for Variable Transposition Rate with an Age-Adjusted Site Frequency Spectrum.
Genome Biol Evol. 2022 Feb 4;14(2). doi: 10.1093/gbe/evac016.

本文引用的文献

1
Genome Size and Species Diversification.
Evol Biol. 2010 Dec;37(4):227-233. doi: 10.1007/s11692-010-9093-4. Epub 2010 Sep 17.
2
Long-term evolution of the roo transposable element copy number in mutation accumulation lines of Drosophila melanogaster.
Genet Res (Camb). 2011 Jun;93(3):181-7. doi: 10.1017/S0016672311000103. Epub 2011 May 6.
3
4
Evolutionary dynamics of transposable elements in a small RNA world.
Trends Genet. 2011 Jan;27(1):23-31. doi: 10.1016/j.tig.2010.10.003. Epub 2010 Nov 11.
5
Genetic variation of copia suppression in Drosophila melanogaster.
Heredity (Edinb). 2011 Feb;106(2):207-17. doi: 10.1038/hdy.2010.41. Epub 2010 Jul 7.
6
Promiscuous DNA: horizontal transfer of transposable elements and why it matters for eukaryotic evolution.
Trends Ecol Evol. 2010 Sep;25(9):537-46. doi: 10.1016/j.tree.2010.06.001. Epub 2010 Jun 28.
7
Small RNA-based silencing strategies for transposons in the process of invading Drosophila species.
RNA. 2010 Aug;16(8):1634-45. doi: 10.1261/rna.2217810. Epub 2010 Jun 25.
8
The RNA interference system differently responds to the same mobile element in distant Drosophila species.
Dokl Biochem Biophys. 2010 Mar-Apr;431:79-81. doi: 10.1134/s1607672910020079.
9
Inbreeding effects in the epigenetic era.
Nat Rev Genet. 2010 Mar;11(3):234. doi: 10.1038/nrg2664-c1. Epub 2010 Jan 27.
10
Jumping genes and epigenetics: Towards new species.
Gene. 2010 Apr 1;454(1-2):1-7. doi: 10.1016/j.gene.2010.01.003. Epub 2010 Jan 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验