Suppr超能文献

贝叶斯和布莱基茨:知识对儿童和成人因果推理的影响。

Bayes and blickets: effects of knowledge on causal induction in children and adults.

机构信息

Department of Psychology, University of California, Berkeley, CA 94720-1650, USA.

出版信息

Cogn Sci. 2011 Nov-Dec;35(8):1407-55. doi: 10.1111/j.1551-6709.2011.01203.x. Epub 2011 Oct 4.

Abstract

People are adept at inferring novel causal relations, even from only a few observations. Prior knowledge about the probability of encountering causal relations of various types and the nature of the mechanisms relating causes and effects plays a crucial role in these inferences. We test a formal account of how this knowledge can be used and acquired, based on analyzing causal induction as Bayesian inference. Five studies explored the predictions of this account with adults and 4-year-olds, using tasks in which participants learned about the causal properties of a set of objects. The studies varied the two factors that our Bayesian approach predicted should be relevant to causal induction: the prior probability with which causal relations exist, and the assumption of a deterministic or a probabilistic relation between cause and effect. Adults' judgments (Experiments 1, 2, and 4) were in close correspondence with the quantitative predictions of the model, and children's judgments (Experiments 3 and 5) agreed qualitatively with this account.

摘要

人们擅长从仅有的一些观察中推断出新的因果关系。关于遇到各种类型因果关系的概率以及因果关系的机制性质的先验知识在这些推断中起着至关重要的作用。我们根据对因果关系归纳的贝叶斯推理分析,检验了如何利用和获取这些知识的一种形式化解释。五项研究利用参与者了解一组物体因果属性的任务,以成人和 4 岁儿童为被试,探索了这一解释的预测。这些研究改变了两个因素,我们的贝叶斯方法预测这些因素与因果关系归纳有关:因果关系存在的先验概率,以及因果关系之间是确定的还是概率的关系。成人的判断(实验 1、2 和 4)与模型的定量预测非常吻合,而儿童的判断(实验 3 和 5)与该解释在质上一致。

相似文献

7
Non-bayesian inference: causal structure trumps correlation.非贝叶斯推理:因果结构胜过相关性。
Cogn Sci. 2012 Sep-Oct;36(7):1178-203. doi: 10.1111/j.1551-6709.2012.01262.x. Epub 2012 Jun 26.
8
The role of causal models in analogical inference.因果模型在类比推理中的作用。
J Exp Psychol Learn Mem Cogn. 2008 Sep;34(5):1111-22. doi: 10.1037/a0012581.

引用本文的文献

1
Forward and backward blocking in statistical learning.统计学习中的前向和后向阻断。
PLoS One. 2024 Aug 5;19(8):e0306797. doi: 10.1371/journal.pone.0306797. eCollection 2024.
3
Can the Brain Build Probability Distributions?大脑能够构建概率分布吗?
Front Psychol. 2021 Mar 25;12:596231. doi: 10.3389/fpsyg.2021.596231. eCollection 2021.
7
How causal information affects decisions.因果信息如何影响决策。
Cogn Res Princ Implic. 2020 Feb 13;5(1):6. doi: 10.1186/s41235-020-0206-z.
8
Learning the designed actions of everyday objects.学习日常物体的设计动作。
J Exp Psychol Gen. 2020 Jan;149(1):67-78. doi: 10.1037/xge0000631. Epub 2019 Jun 20.
10
Holistic Reinforcement Learning: The Role of Structure and Attention.整体强化学习:结构与注意力的作用。
Trends Cogn Sci. 2019 Apr;23(4):278-292. doi: 10.1016/j.tics.2019.01.010. Epub 2019 Feb 26.

本文引用的文献

2
Do We "do"?我们“做”了吗?
Cogn Sci. 2005 Jan 2;29(1):5-39. doi: 10.1207/s15516709cog2901_2.
5
Theory-based causal induction.基于理论的因果归纳
Psychol Rev. 2009 Oct;116(4):661-716. doi: 10.1037/a0017201.
6
Causal learning with local computations.基于局部计算的因果学习
J Exp Psychol Learn Mem Cogn. 2009 May;35(3):678-93. doi: 10.1037/a0014928.
8
Bayesian generic priors for causal learning.用于因果学习的贝叶斯通用先验
Psychol Rev. 2008 Oct;115(4):955-84. doi: 10.1037/a0013256.
10
The role of causality in judgment under uncertainty.因果关系在不确定性判断中的作用。
J Exp Psychol Gen. 2007 Aug;136(3):430-50. doi: 10.1037/0096-3445.136.3.430.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验