Suppr超能文献

厘清交互作用效应多重共线性中均数中心化的作用。

Clarifying the role of mean centring in multicollinearity of interaction effects.

机构信息

Department of Management Science, National Chiao Tung University, Hsinchu, Taiwan, Republic of China.

出版信息

Br J Math Stat Psychol. 2011 Nov;64(3):462-77. doi: 10.1111/j.2044-8317.2010.02002.x. Epub 2011 Jan 13.

Abstract

Moderated multiple regression (MMR) is frequently employed to analyse interaction effects between continuous predictor variables. The procedure of mean centring is commonly recommended to mitigate the potential threat of multicollinearity between predictor variables and the constructed cross-product term. Also, centring does typically provide more straightforward interpretation of the lower-order terms. This paper attempts to clarify two methodological issues of potential confusion. First, the positive and negative effects of mean centring on multicollinearity diagnostics are explored. It is illustrated that the mean centring method is, depending on the characteristics of the data, capable of either increasing or decreasing various measures of multicollinearity. Second, the exact reason why mean centring does not affect the detection of interaction effects is given. The explication shows the symmetrical influence of mean centring on the corrected sum of squares and variance inflation factor of the product variable while maintaining the equivalence between the two residual sums of squares for the regression of the product term on the two predictor variables. Thus the resulting test statistic remains unchanged regardless of the obvious modification of multicollinearity with mean centring. These findings provide a clear understanding and demonstration on the diverse impact of mean centring in MMR applications.

摘要

中调整的多元回归(MMR)常用于分析连续预测变量之间的交互效应。为了减轻预测变量之间和构建的交叉乘积项之间潜在的共线性威胁,通常建议采用均值中心化程序。此外,中心化通常提供更直接的低阶项解释。本文试图澄清两个潜在混淆的方法学问题。首先,探讨了均值中心化对共线性诊断的积极和消极影响。结果表明,均值中心化方法取决于数据的特征,既可以增加也可以减少各种共线性度量。其次,给出了均值中心化不影响交互效应检测的确切原因。这一解释表明,在保持乘积变量回归到两个预测变量的两个残差平方和相等的情况下,均值中心化对乘积变量的校正平方和和方差膨胀因子具有对称影响。因此,无论均值中心化如何明显改变共线性,结果的统计量都保持不变。这些发现为 MMR 应用中均值中心化的不同影响提供了清晰的理解和演示。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验