Suppr超能文献

具有分数阶动力学的两个复杂网络之间的鲁棒外部同步。

Robust outer synchronization between two complex networks with fractional order dynamics.

机构信息

Control and Communication Networks Lab, Electrical Engineering Department, Tarbiat Modares University, Tehran, Iran.

出版信息

Chaos. 2011 Sep;21(3):033121. doi: 10.1063/1.3629986.

Abstract

Synchronization between two coupled complex networks with fractional-order dynamics, hereafter referred to as outer synchronization, is investigated in this work. In particular, we consider two systems consisting of interconnected nodes. The state variables of each node evolve with time according to a set of (possibly nonlinear and chaotic) fractional-order differential equations. One of the networks plays the role of a master system and drives the second network by way of an open-plus-closed-loop (OPCL) scheme. Starting from a simple analysis of the synchronization error and a basic lemma on the eigenvalues of matrices resulting from Kronecker products, we establish various sets of conditions for outer synchronization, i.e., for ensuring that the errors between the state variables of the master and response systems can asymptotically vanish with time. Then, we address the problem of robust outer synchronization, i.e., how to guarantee that the states of the nodes converge to common values when the parameters of the master and response networks are not identical, but present some perturbations. Assuming that these perturbations are bounded, we also find conditions for outer synchronization, this time given in terms of sets of linear matrix inequalities (LMIs). Most of the analytical results in this paper are valid both for fractional-order and integer-order dynamics. The assumptions on the inner (coupling) structure of the networks are mild, involving, at most, symmetry and diffusivity. The analytical results are complemented with numerical examples. In particular, we show examples of generalized and robust outer synchronization for networks whose nodes are governed by fractional-order Lorenz dynamics.

摘要

本文研究了两个具有分数阶动力学的耦合复杂网络之间的同步问题,即外同步。具体来说,我们考虑了由互连节点组成的两个系统。每个节点的状态变量随时间根据一组(可能是非线性和混沌的)分数阶微分方程演化。其中一个网络作为主系统,通过开环-闭环(OPCL)方案驱动第二个网络。从同步误差的简单分析和矩阵特征值的基本引理出发,我们建立了各种外同步条件的集合,即确保主系统和响应系统的状态变量之间的误差可以随时间渐近消失的条件。然后,我们解决了鲁棒外同步的问题,即当主网络和响应网络的参数不相等但存在一些扰动时,如何确保节点的状态收敛到公共值。假设这些扰动是有界的,我们还找到了外同步的条件,这次是以线性矩阵不等式(LMI)的集合形式给出的。本文中的大部分分析结果对于分数阶和整数阶动力学都是有效的。网络的内部(耦合)结构的假设很温和,最多涉及对称性和扩散性。分析结果还辅以数值示例。特别是,我们展示了节点由分数阶 Lorenz 动力学控制的网络的广义和鲁棒外同步的示例。

相似文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验