Suppr超能文献

不可逆过程中的信息对称性。

Information symmetries in irreversible processes.

机构信息

Complexity Sciences Center, Physics Department, University of California at Davis, One Shields Avenue, Davis, California 95616, USA.

出版信息

Chaos. 2011 Sep;21(3):037107. doi: 10.1063/1.3637490.

Abstract

We study dynamical reversibility in stationary stochastic processes from an information-theoretic perspective. Extending earlier work on the reversibility of Markov chains, we focus on finitary processes with arbitrarily long conditional correlations. In particular, we examine stationary processes represented or generated by edge-emitting, finite-state hidden Markov models. Surprisingly, we find pervasive temporal asymmetries in the statistics of such stationary processes. As a consequence, the computational resources necessary to generate a process in the forward and reverse temporal directions are generally not the same. In fact, an exhaustive survey indicates that most stationary processes are irreversible. We study the ensuing relations between model topology in different representations, the process's statistical properties, and its reversibility in detail. A process's temporal asymmetry is efficiently captured using two canonical unifilar representations of the generating model, the forward-time and reverse-time ε-machines. We analyze example irreversible processes whose ε-machine representations change size under time reversal, including one which has a finite number of recurrent causal states in one direction, but an infinite number in the opposite. From the forward-time and reverse-time ε-machines, we are able to construct a symmetrized, but nonunifilar, generator of a process--the bidirectional machine. Using the bidirectional machine, we show how to directly calculate a process's fundamental information properties, many of which are otherwise only poorly approximated via process samples. The tools we introduce and the insights we offer provide a better understanding of the many facets of reversibility and irreversibility in stochastic processes.

摘要

我们从信息论的角度研究了静态随机过程中的动力学可逆性。在扩展了关于马尔可夫链可逆性的早期工作的基础上,我们专注于具有任意长条件相关性的有限过程。具体来说,我们研究了由边缘发射的有限状态隐马尔可夫模型表示或生成的静态过程。令人惊讶的是,我们发现这种静态过程的统计数据中存在普遍的时间不对称性。因此,在正向和反向时间方向上生成过程所需的计算资源通常是不相同的。事实上,全面调查表明,大多数静态过程是不可逆的。我们详细研究了不同表示中的模型拓扑、过程的统计性质及其可逆性之间的关系。过程的时间不对称性可以使用生成模型的两个典型的单链表示——正向时间和反向时间 ε 机来有效地捕捉。我们分析了不可逆过程的示例,这些过程的 ε 机表示在时间反转下会改变大小,包括一个在一个方向上具有有限数量的递归因果状态,但在相反方向上具有无限数量的状态。从正向时间和反向时间的 ε 机中,我们能够构建一个对称但非单链的过程生成器——双向机。使用双向机,我们展示了如何直接计算过程的基本信息特性,其中许多特性通过过程样本很难准确估计。我们引入的工具和提供的见解为理解随机过程中的可逆性和不可逆性的许多方面提供了更好的理解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验