Suppr超能文献

用于非 miRNA 小 RNA 转录组注释和分类的无偏框架。

A non-biased framework for the annotation and classification of the non-miRNA small RNA transcriptome.

机构信息

Genetic Causes of Disease, Genes and Disease Programme, Centre for Genomic Regulation (CRG) and UPF, Barcelona, Spain.

出版信息

Bioinformatics. 2011 Nov 15;27(22):3202-3. doi: 10.1093/bioinformatics/btr527. Epub 2011 Oct 5.

Abstract

MOTIVATION

Recent progress in high-throughput sequencing technologies has largely contributed to reveal a highly complex landscape of small non-coding RNAs (sRNAs), including novel non-canonical sRNAs derived from long non-coding RNA, repeated elements, transcription start sites and splicing site regions among others. The published frameworks for sRNA data analysis are focused on miRNA detection and prediction, ignoring further information in the dataset. As a consequence, tools for the identification and classification of the sRNAs not belonging to miRNA family are currently lacking.

RESULTS

Here, we present, SeqCluster, an extension of the currently available SeqBuster tool to identify and analyze at different levels the sRNAs not annotated or predicted as miRNAs. This new module deals with sequences mapping onto multiple locations and permits a highly versatile and user-friendly interaction with the data in order to easily classify sRNA sequences with a putative functional importance. We were able to detect all known classes of sRNAs described to date using SeqCluster with different sRNA datasets.

摘要

动机

高通量测序技术的最新进展在很大程度上揭示了高度复杂的小非编码 RNA(sRNA)景观,包括来自长非编码 RNA、重复元件、转录起始位点和剪接位点区域等的新型非规范 sRNA。已发表的 sRNA 数据分析框架侧重于 miRNA 的检测和预测,而忽略了数据集的其他信息。因此,目前缺乏用于识别和分类不属于 miRNA 家族的 sRNA 的工具。

结果

在这里,我们提出了 SeqCluster,这是当前可用的 SeqBuster 工具的扩展,用于在不同级别上识别和分析未注释或预测为 miRNA 的 sRNA。这个新模块处理映射到多个位置的序列,并允许与数据进行高度灵活和用户友好的交互,以便轻松分类具有潜在功能重要性的 sRNA 序列。我们能够使用 SeqCluster 检测到迄今为止使用不同 sRNA 数据集描述的所有已知 sRNA 类别。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验