Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Ramat Aviv 69978, Israel.
J Neurosci. 2011 Oct 5;31(40):14158-71. doi: 10.1523/JNEUROSCI.2666-11.2011.
Whereas neuronal M-type K(+) channels composed of KCNQ2 and KCNQ3 subunits regulate firing properties of neurons, presynaptic KCNQ2 subunits were demonstrated to regulate neurotransmitter release by directly influencing presynaptic function. Two interaction partners of M-channels, syntaxin 1A and calmodulin, are known to act presynaptically, syntaxin serving as a major protein component of the membrane fusion machinery and calmodulin serving as regulator of several processes related to neurotransmitter release. Notably, both partners specifically modulate KCNQ2 but not KCNQ3 subunits, suggesting selective presynaptic targeting to directly regulate exocytosis without interference in neuronal firing properties. Here, having first demonstrated in Xenopus oocytes, using analysis of single-channel biophysics, that both modulators downregulate the open probability of KCNQ2 but not KCNQ3 homomers, we sought to resolve the channel structural determinants that confer the isoform-specific gating downregulation and to get insights into the molecular events underlying this mechanism. We show, using optical, biochemical, electrophysiological, and molecular biology analyses, the existence of constitutive interactions between the N and C termini in homomeric KCNQ2 and KCNQ3 channels in living cells. Furthermore, rearrangement in the relative orientation of the KCNQ2 termini that accompanies reduction in single-channel open probability is induced by both regulators, strongly suggesting that closer N-C termini proximity underlies gating downregulation. Different structural determinants, identified at the N and C termini of KCNQ3, prevent the effects by syntaxin 1A and calmodulin, respectively. Moreover, we show that the syntaxin 1A and calmodulin effects can be additive or blocked at different concentration ranges of calmodulin, bearing physiological significance with regard to presynaptic exocytosis.
虽然神经元 M 型钾 (K+) 通道由 KCNQ2 和 KCNQ3 亚基组成,调节神经元的发射特性,但现已证实,突触前 KCNQ2 亚基通过直接影响突触前功能来调节神经递质的释放。M 型通道的两个相互作用伙伴,突触融合蛋白 1A 和钙调蛋白,已知在突触前起作用,突触融合蛋白作为膜融合机制的主要蛋白成分,钙调蛋白作为与神经递质释放相关的几个过程的调节剂。值得注意的是,这两种伴侣特异性调节 KCNQ2 而不是 KCNQ3 亚基,表明选择性突触前靶向作用,直接调节胞吐作用而不干扰神经元的发射特性。在这里,我们首先在非洲爪蟾卵母细胞中证明,使用单通道生物物理学分析,两种调节剂下调 KCNQ2 但不调节 KCNQ3 同型二聚体的开放概率,我们试图解决赋予这种亚型特异性门控下调的通道结构决定因素,并深入了解该机制的分子事件。我们使用光学、生化、电生理和分子生物学分析表明,在活细胞中,同种型 KCNQ2 和 KCNQ3 通道的 N 和 C 末端之间存在组成性相互作用。此外,伴随单通道开放概率降低而诱导的 KCNQ2 末端相对取向的重排,强烈表明门控下调的基础是 N-C 末端接近。在 KCNQ3 的 N 和 C 末端鉴定出的不同结构决定因素,分别防止了突触融合蛋白 1A 和钙调蛋白的作用。此外,我们还表明,突触融合蛋白 1A 和钙调蛋白的作用可以在不同浓度范围的钙调蛋白中产生加性或阻断作用,这对于突触前胞吐作用具有生理意义。