Suppr超能文献

超疏水性完美呈现:荷叶的卓越性能。

Superhydrophobicity in perfection: the outstanding properties of the lotus leaf.

机构信息

Nees Institute, University of Bonn, Meckenheimer Allee 170, 53115 Bonn, Germany.

出版信息

Beilstein J Nanotechnol. 2011;2:152-61. doi: 10.3762/bjnano.2.19. Epub 2011 Mar 10.

Abstract

Lotus leaves have become an icon for superhydrophobicity and self-cleaning surfaces, and have led to the concept of the 'Lotus effect'. Although many other plants have superhydrophobic surfaces with almost similar contact angles, the lotus shows better stability and perfection of its water repellency. Here, we compare the relevant properties such as the micro- and nano-structure, the chemical composition of the waxes and the mechanical properties of lotus with its competitors. It soon becomes obvious that the upper epidermis of the lotus leaf has developed some unrivaled optimizations. The extraordinary shape and the density of the papillae are the basis for the extremely reduced contact area between surface and water drops. The exceptional dense layer of very small epicuticular wax tubules is a result of their unique chemical composition. The mechanical robustness of the papillae and the wax tubules reduce damage and are the basis for the perfection and durability of the water repellency. A reason for the optimization, particularly of the upper side of the lotus leaf, can be deduced from the fact that the stomata are located in the upper epidermis. Here, the impact of rain and contamination is higher than on the lower epidermis. The lotus plant has successfully developed an excellent protection for this delicate epistomatic surface of its leaves.

摘要

荷叶已经成为超疏水和自清洁表面的标志,并催生了“荷叶效应”的概念。尽管许多其他植物也具有几乎相同接触角的超疏水表面,但荷叶在其疏水性的稳定性和完美性方面表现更好。在这里,我们比较了荷叶与其竞争者的微观和纳米结构、蜡的化学成分以及机械性能等相关特性。很快就会发现,荷叶的上表皮已经进行了一些无与伦比的优化。乳突的非凡形状和密度是表面与水滴之间接触面积极大减少的基础。非常小的表皮蜡质管的特殊密集层是其独特化学成分的结果。乳突和蜡质管的机械坚固性减少了损坏,是疏水性完美和耐用的基础。荷叶的优化,特别是上表面的优化,可以从气孔位于上表皮这一事实中推断出来。在这里,雨水和污染的冲击比在下表皮更高。因此,荷叶植物已经成功地为其叶片的这种精致的叶表提供了出色的保护。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7fa4/3148040/865d9d72b9bc/Beilstein_J_Nanotechnol-02-152-g002.jpg

相似文献

1
Superhydrophobicity in perfection: the outstanding properties of the lotus leaf.
Beilstein J Nanotechnol. 2011;2:152-61. doi: 10.3762/bjnano.2.19. Epub 2011 Mar 10.
2
Superhydrophobic surfaces developed by mimicking hierarchical surface morphology of lotus leaf.
Molecules. 2014 Apr 4;19(4):4256-83. doi: 10.3390/molecules19044256.
3
From natural to biomimetic: The superhydrophobicity and the contact time.
Microsc Res Tech. 2016 Aug;79(8):712-20. doi: 10.1002/jemt.22689. Epub 2016 Jun 2.
4
The role of bio-inspired hierarchical structures in wetting.
Bioinspir Biomim. 2015 Apr 9;10(2):026009. doi: 10.1088/1748-3190/10/2/026009.
5
Mechanism of self-recovery of hydrophobicity after surface damage of lotus leaf.
Plant Methods. 2024 Mar 21;20(1):47. doi: 10.1186/s13007-024-01174-7.
6
Superhydrophobic lotus-leaf-like surface made from reduced graphene oxide through soft-lithographic duplication.
RSC Adv. 2020 Feb 3;10(9):5478-5486. doi: 10.1039/c9ra10373b. eCollection 2020 Jan 29.
7
A critical review on robust self-cleaning properties of lotus leaf.
Soft Matter. 2023 Feb 8;19(6):1058-1075. doi: 10.1039/d2sm01521h.
8
The Barthlott effect.
Quant Plant Biol. 2023 Dec 7;4:e16. doi: 10.1017/qpb.2023.15. eCollection 2023.
9
Antisoiling Performance of Lotus Leaf and Other Leaves after Prolonged Outdoor Exposure.
ACS Appl Mater Interfaces. 2020 Nov 25;12(47):53394-53402. doi: 10.1021/acsami.0c13477. Epub 2020 Nov 11.
10
Micro-, nano- and hierarchical structures for superhydrophobicity, self-cleaning and low adhesion.
Philos Trans A Math Phys Eng Sci. 2009 May 13;367(1894):1631-72. doi: 10.1098/rsta.2009.0014.

引用本文的文献

1
Biofilm-Forming Ability of Infectious Organisms on Biomimetic SurfacesAn and Machine-Learning Analysis.
ACS Omega. 2025 Aug 25;10(35):39946-39954. doi: 10.1021/acsomega.5c04335. eCollection 2025 Sep 9.
2
Sand-trapping mechanism in psammophyte Ifloga spicata (Asteraceae).
Protoplasma. 2025 Sep 1. doi: 10.1007/s00709-025-02107-4.
3
Nanoparticle-Free 3D-Printed Hydrophobic Surfaces for Ice Mitigation Applications.
Molecules. 2025 Jul 30;30(15):3185. doi: 10.3390/molecules30153185.
4
Frontiers in Innovative Materials and Technologies for Oil-Water Separation.
Polymers (Basel). 2025 Jun 12;17(12):1635. doi: 10.3390/polym17121635.
5
Non-Wettable Galvanic Coatings for Metal Protection: Insights from Nature-Inspired Solutions.
Materials (Basel). 2025 Jun 18;18(12):2890. doi: 10.3390/ma18122890.
6
Superhydrophobic Fatty Acid-Based Spray Coatings with Dual-Mode Antifungal Activity.
ACS Appl Bio Mater. 2025 Jul 21;8(7):5970-5983. doi: 10.1021/acsabm.5c00596. Epub 2025 Jun 9.
7
Recent Developments and Applications of Tactile Sensors with Biomimetic Microstructures.
Biomimetics (Basel). 2025 Feb 27;10(3):147. doi: 10.3390/biomimetics10030147.
8
Emerging Trends in Bioinspired Superhydrophobic and Superoleophobic Sustainable Surfaces.
Adv Mater. 2025 Mar;37(12):e2415961. doi: 10.1002/adma.202415961. Epub 2025 Feb 18.
10
Design Aspects in Vat Photopolymerization Additive Manufacturing of Hydrophobic Surfaces.
3D Print Addit Manuf. 2024 Aug 20;11(4):1545-1554. doi: 10.1089/3dp.2023.0076. eCollection 2024 Aug.

本文引用的文献

1
[The wettability of leaf surfaces and the submicroscopic structure of their wax].
Planta. 1971 Jun;96(2):119-35. doi: 10.1007/BF00386362.
2
FTIR spectroscopy of synthesized racemic nonacosan-10-ol: a model compound for plant epicuticular waxes.
J Biol Phys. 2010 Sep;36(4):405-25. doi: 10.1007/s10867-010-9192-6. Epub 2010 Aug 5.
3
Dry under water: comparative morphology and functional aspects of air-retaining insect surfaces.
J Morphol. 2011 Apr;272(4):442-51. doi: 10.1002/jmor.10921. Epub 2011 Feb 2.
5
8
Superhydrophobic and superhydrophilic plant surfaces: an inspiration for biomimetic materials.
Philos Trans A Math Phys Eng Sci. 2009 Apr 28;367(1893):1487-509. doi: 10.1098/rsta.2009.0022.
9
The dewetting properties of lotus leaves.
Langmuir. 2009 Feb 3;25(3):1371-6. doi: 10.1021/la8024233.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验