Balmert Alexander, Florian Bohn Holger, Ditsche-Kuru Petra, Barthlott Wilhelm
Departement of Biology, Nees Institute for Biodiversity of Plants, Rheinische Friedrich-Wilhelms University of Bonn, 53115 Bonn, Germany.
J Morphol. 2011 Apr;272(4):442-51. doi: 10.1002/jmor.10921. Epub 2011 Feb 2.
Superhydrophobic surfaces prevent certain body parts of semiaquatic and aquatic insects from getting wet while submerged in water. The air layer on these surfaces can serve the insects as a physical gill. Using scanning electron microscopy, we investigated the morphology of air-retaining surfaces in five insect species with different levels of adaptation to aquatic habitats. We found surfaces with either large and sparse hairs (setae), small and dense hairs (microtrichia), or hierarchically structured surfaces with both types of hairs. The structural parameters and air-film persistence of these surfaces were compared. Air-film persistence varied between 2 days in the beetle Galerucella nymphaea possessing only sparse setae and more than 120 days in the bugs Notonecta glauca and Ilyocoris cimicoides possessing dense microtrichia (up to 6.6 × 10(6) microtrichia per millimeter square). From our results, we conclude that the density of the surface structures is the most important factor that affects the persistence of air films. Combinations of setae and microtrichia are not decisive for the overall persistence of the air film but might provide a thick air store for a short time and a thin but mechanically more stable air film for a long time. Thus, we assume that a dense cover of microtrichia acts as a "backup system" preventing wetting of the body surface in case the air-water interface is pressed toward the surface. Our findings might be beneficial for the development of biomimetic surfaces for long-term air retention and drag reduction under water. In addition, the biological functions of the different air retention capabilities are discussed.
超疏水表面可防止半水生和水生昆虫的某些身体部位在浸入水中时被打湿。这些表面上的空气层可作为昆虫的物理鳃。我们使用扫描电子显微镜研究了五种对水生栖息地适应程度不同的昆虫物种中保持空气的表面形态。我们发现了具有大而稀疏的毛发(刚毛)、小而密集的毛发(微刚毛)的表面,或同时具有这两种毛发的分层结构表面。比较了这些表面的结构参数和气膜持久性。气膜持久性在仅具有稀疏刚毛的睡莲萤叶甲中为2天,而在具有密集微刚毛(每平方毫米高达6.6×10⁶根微刚毛)的宽肩黾蝽和水黾中则超过120天。根据我们的结果,我们得出结论,表面结构的密度是影响气膜持久性的最重要因素。刚毛和微刚毛的组合对气膜的整体持久性并非决定性因素,但可能会在短时间内提供一个厚的空气储存层,并在长时间内提供一个薄但机械上更稳定的气膜。因此,我们假设密集的微刚毛覆盖层起到了“备用系统”的作用,以防气 - 水界面被压向表面时防止体表被打湿。我们的发现可能有利于开发用于水下长期保持空气和减少阻力的仿生表面。此外,还讨论了不同空气保持能力的生物学功能。