Suppr超能文献

利用介观模型设计强韧的仿生聚合物网络。

Using mesoscopic models to design strong and tough biomimetic polymer networks.

机构信息

Chemical Engineering Department, University of Pittsburgh, Pennsylvania 15261, United States.

出版信息

Langmuir. 2011 Nov 15;27(22):13796-805. doi: 10.1021/la202760z. Epub 2011 Oct 24.

Abstract

Using computational modeling, we investigate the mechanical properties of polymeric materials composed of coiled chains, or "globules", which encompass a folded secondary structure and are cross-linked by labile bonds to form a macroscopic network. In the presence of an applied force, the globules can unfold into linear chains and thereby dissipate energy as the network is deformed; the latter attribute can contribute to the toughness of the material. Our goal is to determine how to tailor the labile intra- and intermolecular bonds within the network to produce material exhibiting both toughness and strength. Herein, we use the lattice spring model (LSM) to simulate the globules and the cross-linked network. We also utilize our modified Hierarchical Bell model (MHBM) to simulate the rupture and reforming of N parallel bonds. By applying a tensile deformation, we demonstrate that the mechanical properties of the system are sensitive to the values of N(in) and N(out), the respective values of N for the intra- and intermolecular bonds. We find that the strength of the material is mainly controlled by the value of N(out), with the higher value of N(out) providing a stronger material. We also find that, if N(in) is smaller than N(out), the globules can unfold under the tensile load before the sample fractures and, in this manner, can increase the ductility of the sample. Our results provide effective strategies for exploiting relatively weak, labile interactions (e.g., hydrogen bonding or the thiol/disulfide exchange reaction) in both the intra- and intermolecular bonds to tailor the macroscopic performance of the materials.

摘要

利用计算模型,我们研究了由卷曲链(即“球粒”)组成的聚合物材料的力学性能,这些球粒包含折叠的二级结构,并通过不稳定键交联形成宏观网络。在施加外力的情况下,球粒可以展开成线性链,从而在网络变形时耗散能量;后者的特性可以为材料的韧性做出贡献。我们的目标是确定如何调整网络内的不稳定的分子内和分子间键,以生产出既具有韧性又具有强度的材料。在此,我们使用晶格弹簧模型(LSM)来模拟球粒和交联网络。我们还利用我们修改的分层钟模型(MHBM)来模拟 N 个平行键的断裂和重组。通过施加拉伸变形,我们证明了系统的力学性能对 N(in)和 N(out)的值很敏感,N(in)和 N(out)分别是分子内和分子间键的 N 值。我们发现,材料的强度主要由 N(out)的值控制,较高的 N(out)值提供了更强的材料。我们还发现,如果 N(in)小于 N(out),球粒可以在样品断裂前在拉伸载荷下展开,从而可以提高样品的延展性。我们的结果为利用相对较弱的、不稳定的相互作用(例如氢键或巯基/二硫键交换反应)在分子内和分子间键中提供了有效的策略,以调整材料的宏观性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验